On solvability of diophantine equations in p -adic numbers

Yuri Nesterenko
Moscow State University

Arithmetic as Geometry: Parshin Fest Moscow, Russia, November 26-29, 2012
$\mathbb{Q},\left|\left.\right|_{p},|p|_{p}=p^{-1}, \mathbb{Q}_{p}\right.$ - the completion of \mathbb{Q}. p-adic numbers were first described by Kurt Hensel in 1897.
$\mathbb{Q},\left|\left.\right|_{p},|p|_{p}=p^{-1}, \mathbb{Q}_{p}\right.$ - the completion of \mathbb{Q}. p-adic numbers were first described by Kurt Hensel in 1897.

$$
\begin{aligned}
& F_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \quad 1 \leq i \leq m, \\
& F_{i} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], \quad \text { solubility in } \quad \mathbb{Q}_{p} .
\end{aligned}
$$

Parameters: $p, n, d=\max _{i} \operatorname{deg} F_{i}, h=\max _{i} h\left(F_{i}\right), m$.
$\mathbb{Q},\left|\left.\right|_{p},|p|_{p}=p^{-1}, \mathbb{Q}_{p}\right.$ - the completion of \mathbb{Q}. p-adic numbers were first described by Kurt Hensel in 1897.

$$
\begin{array}{ll}
- & F_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \quad 1 \leq i \leq m \\
& F_{i} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], \\
\text { solubility in } \mathbb{Q}_{p}
\end{array}
$$

Parameters: $p, n, d=\max _{i} \operatorname{deg} F_{i}, h=\max _{i} h\left(F_{i}\right), m$.

- K. Hensel: Let $F=F\left(x_{1}, \ldots, x_{n}\right)$ be a homogeneous polynomial with coefficients in \mathbb{Z}_{p}. Let $\bar{a} \in \mathbb{Z}^{n}$ be a vector such that

$$
F(\bar{a}) \equiv 0 \quad(\bmod p), \quad \exists i \quad \frac{\partial F}{\partial x_{i}}(\bar{a}) \not \equiv 0 \quad(\bmod p)
$$

Then the equation $F(\bar{x})=0$ has a nontrivial solution in \mathbb{Q}_{p}.

$p \gg n, d$

- C. Chevalley-E. Warning, 1936: If $n>d$, where d is the total degree of F, and the polynomial has no constant term, then the equation $F\left(x_{1}, \ldots, x_{n}\right)=0$ has a nontrivial solution in $G F(p)$.
- C. Chevalley-E. Warning, 1936: If $n>d$, where d is the total degree of F, and the polynomial has no constant term, then the equation $F\left(x_{1}, \ldots, x_{n}\right)=0$ has a nontrivial solution in $G F(p)$.
- The consequence of \mathbf{A}. Weil's theorem about number of points on algebraic curves over finite fields, S.Lang and A.Weil, L.B.Nisnevich, 1954:

Let $F=F\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ be an absolutely irreducible polynomial. Then $N(F, p)$ the number of solutions of

$$
F\left(x_{1}, \ldots, x_{n}\right) \equiv 0 \quad(\bmod p)
$$

satisfies

$$
\left|N(F, p)-p^{n-1}\right|<C(F) p^{n-3 / 2}
$$

where the positive constant $C(F)$ depends only on the polynomial.

```
n>>d
```

- $d=2$, A. Meyer, 1884: An indefinite quadratic form in five or more variables over the field of rational numbers nontrivially represents zero in \mathbb{Q}.

```
n>>d
```

- $d=2$, A. Meyer, 1884: An indefinite quadratic form in five or more variables over the field of rational numbers nontrivially represents zero in \mathbb{Q}.
H. Hasse, 1923: Every quadratic form in five or more variables with coefficients in \mathbb{Q}_{p} nontrivially represents zero in \mathbb{Q}_{p} for all p.

```
n>>d
```

- $d=2$, A. Meyer, 1884: An indefinite quadratic form in five or more variables over the field of rational numbers nontrivially represents zero in \mathbb{Q}.
H. Hasse, 1923: Every quadratic form in five or more variables with coefficients in \mathbb{Q}_{p} nontrivially represents zero in \mathbb{Q}_{p} for all p.

Example: $Q=x_{1}^{2}+x_{2}^{2}-p\left(x_{3}^{2}+x_{4}^{2}\right), p \equiv 3(\bmod 4)$ does not represent zero in \mathbb{Q}_{p}.

- $d=2$, A. Meyer, 1884: An indefinite quadratic form in five or more variables over the field of rational numbers nontrivially represents zero in \mathbb{Q}.
H. Hasse, 1923: Every quadratic form in five or more variables with coefficients in \mathbb{Q}_{p} nontrivially represents zero in \mathbb{Q}_{p} for all p.

Example: $Q=x_{1}^{2}+x_{2}^{2}-p\left(x_{3}^{2}+x_{4}^{2}\right), p \equiv 3(\bmod 4)$ does not represent zero in \mathbb{Q}_{p}.

- $d=3$, Demianov, 1951, $(p \neq 3)$, D.J. Lewis, 1952: Every cubic homogeneous polynomial equation in $n \geq 10$ variables with coefficients in \mathbb{Q}_{p} has a non-trivial zero in \mathbb{Q}_{p}.
- H. Davenport, D.J. Lewis, 1963: An equation

$$
F=c_{1} x_{1}^{d}+\ldots+c_{n} x_{n}^{d}=0, \quad n>d^{2}, \quad c_{j} \in \mathbb{Q}_{p}
$$

has a non-trivial zero in \mathbb{Q}_{p}.

- H. Davenport, D.J. Lewis, 1963: An equation

$$
F=c_{1} x_{1}^{d}+\ldots+c_{n} x_{n}^{d}=0, \quad n>d^{2}, \quad c_{j} \in \mathbb{Q}_{p}
$$

has a non-trivial zero in \mathbb{Q}_{p}.
Simple case ($p \nmid d$):

- By an obvious substitution of the form $x_{i}^{\prime}=p^{\lambda_{i}} x_{i}$ we can ensure that $\nu_{p}\left(c_{i}\right)<d$.
- H. Davenport, D.J. Lewis, 1963: An equation

$$
F=c_{1} x_{1}^{d}+\ldots+c_{n} x_{n}^{d}=0, \quad n>d^{2}, \quad c_{j} \in \mathbb{Q}_{p}
$$

has a non-trivial zero in \mathbb{Q}_{p}.
Simple case ($p \nmid d$):

- By an obvious substitution of the form $x_{i}^{\prime}=p^{\lambda_{i}} x_{i}$ we can ensure that $\nu_{p}\left(c_{i}\right)<d$. Then $F=G_{0}+p G_{1}+\ldots+p^{d-1} G_{d-1}$, where G_{k} are diagonal forms of degree d with coefficients not divisible by p and with own set of variables.
- H. Davenport, D.J. Lewis, 1963: An equation

$$
F=c_{1} x_{1}^{d}+\ldots+c_{n} x_{n}^{d}=0, \quad n>d^{2}, \quad c_{j} \in \mathbb{Q}_{p}
$$

has a non-trivial zero in \mathbb{Q}_{p}.
Simple case ($p \nmid d$):

- By an obvious substitution of the form $x_{i}^{\prime}=p^{\lambda_{i}} x_{i}$ we can ensure that $\nu_{p}\left(c_{i}\right)<d$. Then $F=G_{0}+p G_{1}+\ldots+p^{d-1} G_{d-1}$, where G_{k} are diagonal forms of degree d with coefficients not divisible by p and with own set of variables.
- If G_{0} depends on more than d variables, one can apply Chevalley's lemma to G_{0} and Hensel's lemma to the form F.
- H. Davenport, D.J. Lewis, 1963: An equation

$$
F=c_{1} x_{1}^{d}+\ldots+c_{n} x_{n}^{d}=0, \quad n>d^{2}, \quad c_{j} \in \mathbb{Q}_{p}
$$

has a non-trivial zero in \mathbb{Q}_{p}.
Simple case ($p \nmid d$):

- By an obvious substitution of the form $x_{i}^{\prime}=p^{\lambda_{i}} x_{i}$ we can ensure that $\nu_{p}\left(c_{i}\right)<d$. Then $F=G_{0}+p G_{1}+\ldots+p^{d-1} G_{d-1}$, where G_{k} are diagonal forms of degree d with coefficients not divisible by p and with own set of variables.
- If G_{0} depends on more than d variables, one can apply Chevalley's lemma to G_{0} and Hensel's lemma to the form F.
- In general case one can effect a cyclic permutation of G_{0}, \ldots, G_{d-1} by putting $x_{i}=p \tilde{x}_{i}$ for all the variables in G_{0} and then dividing throughout by p. Since the total number of variables is $n>d^{2}$, we can choose a cyclic permutation which will ensure that the number of terms in G_{0} became larger then d.

```
n>>d
```

- R. Brauer, 1945: There exists a positive function $\psi(d)$ such that any system

$$
F_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \quad F_{i} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], \quad 1 \leq i \leq m
$$

with $n>\psi(d)$ is soluble in \mathbb{Q}_{p}.

```
n>>d
```

- R. Brauer, 1945: There exists a positive function $\psi(d)$ such that any system

$$
F_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \quad F_{i} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], \quad 1 \leq i \leq m,
$$

with $n>\psi(d)$ is soluble in \mathbb{Q}_{p}.
Best upper bounds for $\psi(d)$ are

- W. Schmidt, 1984: $\log \psi(d)=o\left(2^{d} d!\right)$
- T. Wooley, 1998: $\log \psi(d) \leq 2^{d} \log d$.
- R. Brauer, 1945: There exists a positive function $\psi(d)$ such that any system

$$
F_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \quad F_{i} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], \quad 1 \leq i \leq m,
$$

with $n>\psi(d)$ is soluble in \mathbb{Q}_{p}.
Best upper bounds for $\psi(d)$ are

- W. Schmidt, 1984: $\log \psi(d)=o\left(2^{d} d!\right)$
- T. Wooley, 1998: $\log \psi(d) \leq 2^{d} \log d$.
- J. Ax, S. Kochen, 1965: For every d there is a number $p(d)$ such that every form with $n>d^{2}$ variables and $p>p(d)$ has a nontrivial p-adic zero.

```
n>>d
```

- Conjecture (attributed to E. Artin, 1933-1935): A form $F(\bar{x}) \in \mathbb{Q}_{p}\left[x_{1}, \ldots, x_{n}\right]$ of degree d should have a non-trivial p-adic zero as soon as $n>d^{2}$, i.e. $\psi(d)=d^{2}$ independently on p.

```
n>>d
```

- Conjecture (attributed to E. Artin, 1933-1935): A form $F(\bar{x}) \in \mathbb{Q}_{p}\left[x_{1}, \ldots, x_{n}\right]$ of degree d should have a non-trivial p-adic zero as soon as $n>d^{2}$, i.e. $\psi(d)=d^{2}$ independently on p.
- Counter-examples:
G. Terjanian, 1966: $p=2, d=4, n=18$.
- Conjecture (attributed to E. Artin, 1933-1935): A form $F(\bar{x}) \in \mathbb{Q}_{p}\left[x_{1}, \ldots, x_{n}\right]$ of degree d should have a non-trivial p-adic zero as soon as $n>d^{2}$, i.e. $\psi(d)=d^{2}$ independently on p.
- Counter-examples:
G. Terjanian, 1966: $p=2, d=4, n=18$.
J. Browkin, 1966: For every prime p we have $\psi(d) \geq d^{3-\varepsilon}$. For any
$\varepsilon>0$ there exist infinitely many forms F of degree d such that $n>d^{3-\varepsilon}$ and F has only trivial zeros in \mathbb{Q}_{p}.
- Conjecture (attributed to E. Artin, 1933-1935): A form $F(\bar{x}) \in \mathbb{Q}_{p}\left[x_{1}, \ldots, x_{n}\right]$ of degree d should have a non-trivial p-adic zero as soon as $n>d^{2}$, i.e. $\psi(d)=d^{2}$ independently on p.
- Counter-examples:
G. Terjanian, 1966: $p=2, d=4, n=18$.
J. Browkin, 1966: For every prime p we have $\psi(d) \geq d^{3-\varepsilon}$. For any
$\varepsilon>0$ there exist infinitely many forms F of degree d such that $n>d^{3-\varepsilon}$ and F has only trivial zeros in \mathbb{Q}_{p}.
G. Arhipov, A. Karacuba, 1981:

$$
\psi(d)>p^{\frac{d}{\log ^{2} d \log \log ^{3} d}}
$$

for every p.
Improvements: G. Arhipov, A. Karacuba, 1982 (the best); Lewis and Montgomery (1983), D. Brownawell (1984).

Main steps of the proof. p is odd.

Main steps of the proof. p is odd.
Construction of a sequence of forms F_{r}, only trivially representing zero in \mathbb{Q}_{p} and such that

$$
n_{r+1}>p^{n_{r}}, \quad d_{r+1}<c d_{r} n_{r}, \quad\left(c=6 p^{2}\right)
$$

where n_{r} is the number of variables in $F_{r}, d_{r}=\operatorname{deg} F_{r}$.

Main steps of the proof. p is odd.
Construction of a sequence of forms F_{r}, only trivially representing zero in \mathbb{Q}_{p} and such that

$$
n_{r+1}>p^{n_{r}}, \quad d_{r+1}<c d_{r} n_{r}, \quad\left(c=6 p^{2}\right)
$$

where n_{r} is the number of variables in $F_{r}, d_{r}=\operatorname{deg} F_{r}$.

- Denote $m=n_{r}$. Let a be a natural number, $g(x) \in \mathbb{Z}[x]$, $\operatorname{deg} g(x)<m$,

$$
\left|g\left(u_{j}\right)\right|<p^{-(p-1) a}, \quad j=1, \ldots, m
$$

where

$$
u_{j}=(1+p)^{r_{j}}, \quad a \leq r_{1}<\ldots<r_{m}<\frac{p+1}{2} a=b .
$$

Then $|g(1)|<p^{-m}$. (Interpolation)

- If integers x_{1}, \ldots, x_{n} satisfy

$$
\begin{gathered}
\sum_{j=1}^{n} x_{j}^{(p-1) r_{i}} \equiv 0 \quad\left(\bmod p^{(p-1) a}\right), \quad 1 \leq i \leq m, \quad \text { then } n>p^{m} . \\
p \nmid x_{1} \cdots x_{n} \quad \Rightarrow \quad x_{j}^{p-1} \equiv(1+p)^{c_{j}} \quad\left(\bmod p^{(p-1) a}\right) .
\end{gathered}
$$

- If integers x_{1}, \ldots, x_{n} satisfy

$$
\begin{gathered}
\sum_{j=1}^{n} x_{j}^{(p-1) r_{i}} \equiv 0 \quad\left(\bmod p^{(p-1) a}\right), \quad 1 \leq i \leq m, \quad \text { then } n>p^{m} \\
p \nmid x_{1} \cdots x_{n} \quad \Rightarrow \quad x_{j}^{p-1} \equiv(1+p)^{c_{j}} \quad\left(\bmod p^{(p-1) a}\right) . \\
f(t)=t^{c_{1}}+\ldots+t^{c_{n}}, \quad \varphi(t)=\left(t-u_{1}\right) \cdots\left(t-u_{m}\right), \quad u_{i}=(1+p)^{r_{i}} \\
g(t)=f(t)-\varphi(t) h(t), \quad \operatorname{deg} g(t)<m,
\end{gathered}
$$

- If integers x_{1}, \ldots, x_{n} satisfy

$$
\begin{gathered}
\sum_{j=1}^{n} x_{j}^{(p-1) r_{i}} \equiv 0 \quad\left(\bmod p^{(p-1) a}\right), \quad 1 \leq i \leq m, \quad \text { then } n>p^{m} \\
p \nmid x_{1} \cdots x_{n} \quad \Rightarrow \quad x_{j}^{p-1} \equiv(1+p)^{c_{j}} \quad\left(\bmod p^{(p-1) a}\right) . \\
f(t)=t^{c_{1}}+\ldots+t^{c_{n}}, \quad \varphi(t)=\left(t-u_{1}\right) \cdots\left(t-u_{m}\right), \quad u_{i}=(1+p)^{r_{i}} \\
g(t)=f(t)-\varphi(t) h(t), \quad \operatorname{deg} g(t)<m, \\
f\left(u_{i}\right)=\sum_{j=1}^{n}(1+p)^{r_{i} c_{j}} \equiv \sum_{j=1}^{n} x_{j}^{(p-1) r_{i}} \equiv 0 \quad\left(\bmod p^{(p-1) a}\right) \\
|n|=|f(1)| \leq \max (|g(1)|,|\varphi(1)|) \leq p^{-m} .
\end{gathered}
$$

```
n>>d
```

- $k=1, \ldots, m$

$$
H_{k}(\bar{x})=\sum_{j=1}^{n} x_{j}^{(p-1)(a+k)} \cdot \sum_{j=1}^{n} x_{j}^{(p-1)(b-k)}, \quad \operatorname{deg} H_{k}=(p-1)(a+b)
$$

$a \geq \frac{4 m+2}{p-1} \Rightarrow H_{k}$ have no common factors.

$$
\begin{aligned}
& F_{r+1}\left(x_{1}, \ldots, x_{n}\right)=F_{r}\left(H_{1}, \ldots, H_{m}\right) \\
& n_{r+1}=n>p^{n_{r}}, \quad d_{r+1}=d_{r}(p-1)(a+b) . \\
& \quad a \sim \frac{4 m+2}{p-1} \Rightarrow d_{r+1} \sim(2 p+6) d_{r} n_{r} .
\end{aligned}
$$

```
n>>d
```

Corrected Artin's conjecture (Arhipov, Karacuba, 1981): A form $F(\bar{x}) \in \mathbb{Q}_{p}\left[x_{1}, \ldots, x_{n}\right]$ of degree d should have a non-trivial p-adic zero as soon as $n>d^{2}$ and $p>d$.

```
n>>d
```

Corrected Artin's conjecture (Arhipov, Karacuba, 1981): A form $F(\bar{x}) \in \mathbb{Q}_{p}\left[x_{1}, \ldots, x_{n}\right]$ of degree d should have a non-trivial p-adic zero as soon as $n>d^{2}$ and $p>d$.

- J. Ax, S. Kochen, 1965: For every d there is a number $p(d)$ such that every form with $n>d^{2}$ variables and $p>p(d)$ has a nontrivial p-adic zero.

Algorithms

- Birch, Swinnerton-Dyer, 1962, computed (with computer) the rank of the Mordell group for many elliptic curves. In these computations they needed to decide if a given elliptic curve contains a p-adic point.

Algorithms

- Birch, Swinnerton-Dyer, 1962, computed (with computer) the rank of the Mordell group for many elliptic curves. In these computations they needed to decide if a given elliptic curve contains a p-adic point. An algorithm based on Hensel's lemma was used:

For any polynomial $f(x) \in \mathbb{Z}[x]$ and integer $a \in \mathbb{Z}$ such that

$$
|f(a)|_{p}<\left|f^{\prime}(a)\right|_{p}^{2}
$$

there exists a p-adic zero α of $f(x)$ such that $|\alpha-a|_{p}<1$.

Algorithms

- Birch, Swinnerton-Dyer, 1962, computed (with computer) the rank of the Mordell group for many elliptic curves. In these computations they needed to decide if a given elliptic curve contains a p-adic point. An algorithm based on Hensel's lemma was used:

For any polynomial $f(x) \in \mathbb{Z}[x]$ and integer $a \in \mathbb{Z}$ such that

$$
|f(a)|_{p}<\left|f^{\prime}(a)\right|_{p}^{2}
$$

there exists a p-adic zero α of $f(x)$ such that $|\alpha-a|_{p}<1$.
The set of integer a that should be checked is finite since $|f(a)|_{p}$ and $\left|f^{\prime}(a)\right|_{p}$ can not be small simultaneously.

Algorithms

- B.J. Birch, K. McCann, 1966: Let be $F \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. One can compute an integer $D_{n}(F)$ with following property. Suppose that $|F(\bar{a})|_{p}<\left|D_{n}(F)\right|_{p}$ for some $\bar{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$, then there is a vector $\bar{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{p}^{n}$ such that $F(\bar{\alpha})=0$, $|\bar{\alpha}-\bar{a}|_{p}<1$. Moreover

$$
D_{n}(F)=O\left(e^{c d^{4^{n} n!}(d+h(F))}\right)
$$

Algorithms

- B.J. Birch, K. McCann, 1966: Let be $F \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. One can compute an integer $D_{n}(F)$ with following property. Suppose that $|F(\bar{a})|_{p}<\left|D_{n}(F)\right|_{p}$ for some $\bar{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$, then there is a vector $\bar{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{p}^{n}$ such that $F(\bar{\alpha})=0$, $|\bar{\alpha}-\bar{a}|_{p}<1$. Moreover

$$
D_{n}(F)=O\left(e^{c d^{4^{n} n!}(d+h(F))}\right)
$$

Examples:

1. $n=1$. Let be $F(x) \in \mathbb{Z}[x]$ an irreducible polynomial, $|F(a)|_{p}<|R|_{p}^{2}$ then there exists $\alpha \in \mathbb{Z}_{p}$ such that $F(\alpha)=0$ and $|\alpha-a|_{p}<1$. $R=\operatorname{Res}\left(F, F^{\prime}\right)$
2. $n=2 . \quad F(x, y)=0$.

$$
\begin{array}{ll}
g_{1}(x)=\operatorname{Res}_{y}\left(F(x, y), \frac{\partial F}{\partial y}\right), & g_{2}(y)=\operatorname{Res}_{x}\left(F(x, y), \frac{\partial F}{\partial x}\right) \\
\left|F\left(a_{1}, a_{2}\right)\right|_{p}<\left|g_{1}\left(a_{1}\right)\right|_{p}^{2} \Rightarrow \exists \alpha_{2} \in \mathbb{Z}_{p}, \quad F\left(a_{1}, \alpha_{2}\right)=0 \\
\left|F\left(a_{1}, a_{2}\right)\right|_{p}<\left|g_{2}\left(a_{2}\right)\right|_{p}^{2} \Rightarrow \exists \alpha_{1} \in \mathbb{Z}_{p}, \quad F\left(\alpha_{1}, a_{2}\right)=0
\end{array}
$$

2. $n=2 . \quad F(x, y)=0$.

$$
\begin{array}{ll}
g_{1}(x)=\operatorname{Res}_{y}\left(F(x, y), \frac{\partial F}{\partial y}\right), & g_{2}(y)=\operatorname{Res}_{x}\left(F(x, y), \frac{\partial F}{\partial x}\right) \\
\left|F\left(a_{1}, a_{2}\right)\right|_{p}<\left|g_{1}\left(a_{1}\right)\right|_{p}^{2} \quad \Rightarrow & \exists \alpha_{2} \in \mathbb{Z}_{p}, \quad F\left(a_{1}, \alpha_{2}\right)=0 \\
\left|F\left(a_{1}, a_{2}\right)\right|_{p}<\left|g_{2}\left(a_{2}\right)\right|_{p}^{2} \Rightarrow \quad \exists \alpha_{1} \in \mathbb{Z}_{p}, \quad F\left(\alpha_{1}, a_{2}\right)=0
\end{array}
$$

In case

$$
\begin{aligned}
& \left|g_{1}\left(a_{1}\right)\right|_{p}^{2} \leq\left|F\left(a_{1}, a_{2}\right)\right|_{p}, \quad\left|g_{2}\left(a_{2}\right)\right|_{p}^{2} \leq\left|F\left(a_{1}, a_{2}\right)\right|_{p} \\
& \Rightarrow R=\operatorname{Res}\left(F(x, y), g_{1}(x), g_{2}(y) .\right.
\end{aligned}
$$

Some special cases if $g_{1} \equiv 0$ or $g_{2} \equiv 0$, or $R \equiv 0$.

- A. Chistov, M. Karpinski, 1997, : In the case of systems

$$
0<D_{n}(F)<2^{d^{2^{n(1+o(1))}} h(F)}
$$

- A. Chistov, M. Karpinski, 1997, : In the case of systems

$$
0<D_{n}(F)<2^{d^{2^{n(1+o(1))}} h(F)}
$$

- Hensel :

$$
|F(a)|_{p}<\left|F^{\prime}(a)\right|_{p}^{2} \quad \Rightarrow \quad \exists \alpha \in \mathbb{Z}_{p}, \quad F(\alpha)=0, \quad|\alpha-a|_{p}<1
$$

If $F(x)$ be an irreducible polynomial then $|F(x)|_{p}$ and $\left|F^{\prime}(x)\right|_{p}$ can not be small simultaneously at any point.
With this idea one can prove

$$
|F(a)|_{p}<e^{-8 d(d+h)} \Rightarrow \exists \alpha \in \mathbb{Z}_{p}, F(\alpha)=0,|\alpha-a|<1
$$

Theorem 1. Let $\bar{a}=\left(a_{0}, \ldots, a_{m}\right) \in \mathbb{Z}^{m+1}$ be a primitive vector $F_{i}\left(x_{0}, \ldots, x_{m}\right), \quad i=1, \ldots, n$, be homogeneous polynomials, $I=\left(F_{1}, \ldots, F_{n}\right) \subset \mathbb{Q}\left[x_{0}, \ldots, x_{m}\right], \operatorname{dim} I=r-1$. If

$$
\ln \left|F_{i}(\bar{a})\right|_{p} \leq-c_{1} \cdot d^{2^{r}(m-r+1)-1}(d+h), \quad i=1, \ldots, n,
$$

where d, h are real numbers such that $\operatorname{deg} F_{i} \leq d, h\left(F_{i}\right) \leq h$, and c_{1} is a positive constant depending only on m and r, then there exists a vector $\bar{\alpha} \in \mathbb{Z}_{p}^{m+1}$ such that

$$
F_{i}(\bar{\alpha})=0 \quad i=1, \ldots, n, \quad \text { and } \quad|\bar{\alpha}-\bar{a}|_{p}<1 .
$$

Corollary
Let $\bar{a}=\left(a_{0}, \ldots, a_{m}\right) \in \mathbb{Z}^{m+1}$ be a primitive vector, $F\left(x_{0}, \ldots, x_{m}\right)$ be a homogeneous polynomial. If

$$
\ln |F(\bar{a})| \leq-c_{1} \cdot d^{2^{m}-1}(d+h)
$$

where d, h are real numbers such that

$$
\operatorname{deg} F \leq d, \quad h(F) \leq h,
$$

and c_{1} is a positive constant depending only on m, then there exists a vector $\bar{\alpha} \in \mathbb{Z}_{p}^{m+1}$ such that

$$
F(\bar{\alpha})=0 \quad \text { and } \quad|\bar{\alpha}-\bar{a}|_{p}<1 .
$$

$I \subset \mathbb{Q}[\bar{x}]=\mathbb{Q}\left[x_{0}, \ldots, x_{m}\right]$, homogeneous ideal, associated prime $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ ideals, unmixed ideals: $\operatorname{dim} I=\operatorname{dim} \mathfrak{p}_{j}, 1 \leq j \leq s$. uniqueness.
$\operatorname{dim} I, \operatorname{deg} I, h(I),|I(\bar{\alpha})|, \quad \bar{\alpha} \in \mathbb{Q}_{p}^{m+1}$.
$I \subset \mathbb{Q}[\bar{x}]=\mathbb{Q}\left[x_{0}, \ldots, x_{m}\right]$, homogeneous ideal, associated prime $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ ideals, unmixed ideals: $\operatorname{dim} I=\operatorname{dim} \mathfrak{p}_{j}, 1 \leq j \leq s$. uniqueness.

$$
\operatorname{dim} I, \operatorname{deg} I, h(I),|I(\bar{\alpha})|, \quad \bar{\alpha} \in \mathbb{Q}_{p}^{m+1}
$$

Theorem 2. Let $I \subset \mathbb{Q}\left[x_{0}, \ldots, x_{m}\right]$ be homogeneous unmixed ideal, $\operatorname{dim} I=r-1 \geq 0$ and $\bar{a}=\left(a_{0}, \ldots, a_{m}\right) \in \mathbb{Z}^{m+1}$ be such integer vector that

$$
\ln |I(\bar{a})|_{p} \leq-c^{2 r} \cdot(\operatorname{deg} /)^{2^{r}-1}(h(I)+\operatorname{deg} I),
$$

where $c=c(m)>0$ is a sufficiently large constant depending only on m. Then there exists a p-adic vector $\bar{\alpha} \in \mathbb{Z}_{p}^{m+1}$ that is a zero of I and $|\bar{\alpha}-\bar{a}|_{p}<1$.

Theorem $2 \Rightarrow$ Theorem 1.
Theorem 2 is proved by induction on dim $/$. Assume that

$$
\begin{equation*}
\ln |I(\bar{a})|_{p} \leq-c^{4 r} \cdot(\operatorname{deg} I)^{2^{r}-1}(h(I)+\operatorname{deg} I), \tag{1}
\end{equation*}
$$

where $c=c(m)>0$ be a sufficiently large constant, $\operatorname{dim} I=r-1$.

- Among \mathfrak{p}_{j} there exists a prime $\mathfrak{p} \subset \mathbb{Q}\left[x_{0}, \ldots, x_{m}\right]$, such that

$$
\begin{equation*}
\ln |\mathfrak{p}(\bar{a})|_{p} \leq-c^{4 r-1} \cdot(\operatorname{deg} \mathfrak{p})^{2^{r}-1}(h(\mathfrak{p})+\operatorname{deg} \mathfrak{p}) \tag{2}
\end{equation*}
$$

Let I be homogeneous unmixed ideal of the ring $\mathbb{Q}[\bar{x}], \operatorname{dim} I \geq 0$. Let $I=I_{1} \cap \ldots \cap I_{s}$ be irreducible primary decomposition, $\mathfrak{p}_{j}=\sqrt{I_{j}}$ be radicals and k_{j} be multiplicities of I_{j}. Let $\bar{\omega} \in \mathbb{C}_{p}{ }^{m+1}, \bar{\omega} \neq 0$. Then

1) $\sum_{j=1}^{s} k_{j} \operatorname{deg} \mathfrak{p}_{j}=\operatorname{deg} I$;
2) $\sum_{j=1}^{s} k_{j} h\left(\mathfrak{p}_{j}\right) \leq h(I)+m^{2} \operatorname{deg} I$;
3) $\sum_{j=1}^{s} k_{j} \log \left|\mathfrak{p}_{j}(\bar{\omega})\right|_{p}=\log |I(\bar{\omega})|_{p}$.

- There are polynomials $Q_{1}, \ldots, Q_{t} \in \mathfrak{p}$,

$$
\begin{equation*}
\operatorname{deg} Q_{j} \leq r \operatorname{deg} \mathfrak{p}, \quad h\left(Q_{j}\right) \leq h(\mathfrak{p})+m^{2} \operatorname{deg} \mathfrak{p} \tag{3}
\end{equation*}
$$

Projective varieties of \mathfrak{p} and $\theta(\mathfrak{p})=\left(Q_{1}, \ldots, Q_{t}\right)$ coincide. The ideal $\theta(\mathfrak{p})$ has unique isolated primary component, it equals to \mathfrak{p}.

- There are polynomials $Q_{1}, \ldots, Q_{t} \in \mathfrak{p}$,

$$
\begin{equation*}
\operatorname{deg} Q_{j} \leq r \operatorname{deg} \mathfrak{p}, \quad h\left(Q_{j}\right) \leq h(\mathfrak{p})+m^{2} \operatorname{deg} \mathfrak{p} \tag{3}
\end{equation*}
$$

Projective varieties of \mathfrak{p} and $\theta(\mathfrak{p})=\left(Q_{1}, \ldots, Q_{t}\right)$ coincide. The ideal $\theta(\mathfrak{p})$ has unique isolated primary component, it equals to \mathfrak{p}.

- Rank of the matrix

$$
\begin{equation*}
\left(\frac{\partial Q_{i}}{\partial x_{j}}\right)_{1 \leq i \leq t, 0 \leq j \leq m} \tag{4}
\end{equation*}
$$

modulo \mathfrak{p} equals $m-r+1$.

- There are polynomials $Q_{1}, \ldots, Q_{t} \in \mathfrak{p}$,

$$
\begin{equation*}
\operatorname{deg} Q_{j} \leq r \operatorname{deg} \mathfrak{p}, \quad h\left(Q_{j}\right) \leq h(\mathfrak{p})+m^{2} \operatorname{deg} \mathfrak{p} . \tag{3}
\end{equation*}
$$

Projective varieties of \mathfrak{p} and $\theta(\mathfrak{p})=\left(Q_{1}, \ldots, Q_{t}\right)$ coincide. The ideal $\theta(\mathfrak{p})$ has unique isolated primary component, it equals to \mathfrak{p}.

- Rank of the matrix

$$
\begin{equation*}
\left(\frac{\partial Q_{i}}{\partial x_{j}}\right)_{1 \leq i \leq t, 0 \leq j \leq m} \tag{4}
\end{equation*}
$$

modulo \mathfrak{p} equals $m-r+1$.
$\Delta(\bar{x})$ is a minor of the size $m-r+1$ that does not belong to \mathfrak{p}.

In case

$$
\ln |\Delta(\bar{a})|<-c^{4 r-2} \cdot(\operatorname{deg} \mathfrak{p})^{2^{r}-1}(h(\mathfrak{p})+\operatorname{deg} \mathfrak{p})
$$

one can construct an unmixed ideal $J \subset \mathbb{Q}\left[x_{0}, \ldots, x_{m}\right]$, $\operatorname{dim} J=r-2$ such that

$$
\begin{gathered}
\operatorname{deg} J \leq m^{2} \operatorname{deg}^{2} \mathfrak{p} \\
h(J) \leq 7 m^{4} \operatorname{deg} \mathfrak{p}(h(\mathfrak{p})+\operatorname{deg} \mathfrak{p}) . \\
\ln |J(\bar{a})| \leq-c^{4 r-3} \cdot(\operatorname{deg} \mathfrak{p})^{2^{r-1}}(h(\mathfrak{p})+\operatorname{deg} \mathfrak{p}) \leq \\
\leq-c^{4 r-4} \cdot(\operatorname{deg} J)^{2^{r-1}-1}(h(J)+\operatorname{deg} J) .
\end{gathered}
$$

and $V(J) \subset V(\mathfrak{p})$.
Induction assumption is applied to J.

- In case

$$
\ln |\Delta(\bar{a})| \geq-c^{4 r-2} \cdot(\operatorname{deg} \mathfrak{p})^{2^{r}-1}(h(\mathfrak{p})+\operatorname{deg} \mathfrak{p})
$$

one can use the Hensel lemma and to prove the existence of p-adic zero for \mathfrak{p}.

- In case

$$
\ln |\Delta(\bar{a})| \geq-c^{4 r-2} \cdot(\operatorname{deg} \mathfrak{p})^{2^{r}-1}(h(\mathfrak{p})+\operatorname{deg} \mathfrak{p})
$$

one can use the Hensel lemma and to prove the existence of p-adic zero for \mathfrak{p}.
Conjecture: Right hand side of

$$
\ln \left|F_{i}(\bar{a})\right|_{p} \leq-c_{1} \cdot d^{2^{m}-1}(d+h), \quad i=1, \ldots, n
$$

should be improved to

$$
-c_{1} \cdot d^{m}(d+h)
$$

