Localization, completions and metabelian groups

Gilbert Baumslag, Roman Mikhailov, Kent Orr

What do we want?
(1) Examples of maps between different f.g. residually nilpotent groups

$$
G \rightarrow H
$$

which induce isomorphisms $\widehat{G} \simeq \widehat{H}$.
(2) Given a group G, to describe (if possible) all para- G-groups.
(3) Determine the properties of groups which are common for all para- G-groups (homological, finite presentability, linearity etc).

A group G is metabelian if $[G, G]$ is abelian.

Suppose R is a commutative ring with unit, M is an R-module, and S a multiplicative set containing the unit, $1 \in R$. We denote the result of inverting elements of S by M_{S}. Specifically, consider the abelian group

$$
M_{S}:=M S^{-1}=(M \times S) / \sim
$$

where

$$
\left(x, s_{1}\right) \sim\left(y, s_{2}\right)
$$

if there is an element $s \in S$ such that

$$
\left(x s_{2}-y s_{1}\right) s=0 .
$$

We denote the element (x, s) by the notation $\frac{x}{s}$, and the group law for M_{S} is given by

$$
\frac{x}{s_{1}}+\frac{y}{s_{2}}=\frac{x s_{2}+y s_{1}}{s_{1} s_{2}} .
$$

M_{S} is an R-module via the scalar action

$$
\frac{x}{s} r=\frac{x r}{s} .
$$

Primary Invariants.

We assume that groups we consider are finitely generated.

Theorem. Suppose H is para- G.

- Let $S=1+\operatorname{ker}\left\{\mathbb{Z}\left[G_{a b}\right] \rightarrow \mathbb{Z}\right\}$. Then

$$
S^{-1}[G, G] \cong S^{-1}[H, H] .
$$

- Let $R=\mathbb{Z}\left[G_{a b}\right] / \operatorname{Ann}([G, G])$, where

$$
\begin{aligned}
\operatorname{Ann}([G, G]) & =\left\{r \in \mathbb{Z}\left[G_{a b}\right] \mid\right. \\
& r \cdot m=0 \text { for all } m \in[G, G]\} .
\end{aligned}
$$

Then the localized $\mathbb{Z}\left[G_{a b}\right]=\mathbb{Z}\left[H_{a b}\right]$-module and associated rings for G and H are isomorphic.

In analogy with Algebraic Geometry, we call the ring $\mathbb{Z}\left[G_{a b}\right] / \operatorname{Ann}([G, G])$ the coordinate ring of G.

Examples.

Theorem. If G is a finitely presented, residually nilpotent, metabelian group, and the coordinate ring of G is a principal ideal domain, then any para- G group is isomorphic to G.

- The Lamplighter group

$$
\begin{gathered}
\mathbb{Z} / 2 \backslash \mathbb{Z}=\mathbb{Z} / 2\left[t, t^{-1}\right] \rtimes \mathbb{Z} . \\
\left\langle a, t \mid a^{2}=1, \quad\left[a, a^{t^{i}}\right]=1, i \in \mathbb{Z}\right\rangle
\end{gathered}
$$

- For $n \neq 2$, the group

$$
\left\langle a, b \mid a b a^{-1}=b^{n}\right\rangle
$$

We have a group we call G_{S} which is defined by the following diagram (it is a "push-out of extensions"induced by localization $[G, G] \rightarrow$ $\left.[G, G]_{S}\right):$

$$
\begin{array}{r}
1 \rightarrow[G, G] \longrightarrow G \longrightarrow G_{a b} \longrightarrow 1 \\
1 \rightarrow[G, G]_{S} \rightarrow G_{S} \rightarrow G_{a b} \rightarrow 1
\end{array}
$$

Properties:

(1) G_{S} is Levine's localization of G;
(2) if H is para- G, then $H_{S} \simeq G_{S}$.

Telescope Theorem Given a residually nilpotent, metabelian group G, there is a sequence of groups

$$
G^{0} \subset G^{1} \subset G^{2} \subset \cdots \subset \cup G^{k}=G_{S}
$$

and $G^{k} \cong G$ for all k.

Corollaries of Telescope Theorem:
(1) Let G and H be f.g. metabelian residually nilpotent. If H is para- G, then G is para H. That is we have an equivalence relation;
(2) if G and H are para-equivalent, then G is finitely presented iff H is;
(3) if G and H are para-equivalent, then G is polycyclic iff H is.

Some number theory!

Consider the ring of cyclotomic integers,

$$
\mathbb{Z}\left[\zeta_{n}\right] \cong \mathbb{Z}\left[t, t^{-1}\right] /\left(\phi_{n}(t)\right),
$$

where $\phi_{n}(t)$ is the n-th cyclotomic polynomial.
Let $G=\mathbb{Z} \ltimes \mathbb{Z}\left[\zeta_{n}\right]$, where the action of a generator t of \mathbb{Z} on $\mathbb{Z}\left[\zeta_{n}\right]$ is multiplication by ζ_{n}. G is residually nilpotent if and only if $n=p^{k}$ for some prime p and positive integer k.
$D=\mathbb{Z}\left[\zeta_{n}\right]$ is a principal ideal domain for $n<23$, and any group para-equivalent to $G=T \ltimes \mathbb{Z}\left[\zeta_{p^{k}}\right]$ is isomorphic to G for prime powers $p^{k}<23$.

The first interesting case occurs for $n=23$. In this case the following is a para-equivalence of non-isomorphic groups.

$$
\mathbb{Z} \ltimes\left(2, \frac{1+\sqrt{-23}}{2}\right) \subset \mathbb{Z} \ltimes \mathbb{Z}\left[\zeta_{23}\right] .
$$

Consider the number field, $\mathbf{Q}(\sqrt{d})$. The ring of algebraic integers in this number field, D, is the subring of all solutions to monic polynomials over the integers. This is:

$$
\begin{gathered}
D=\mathbb{Z}[\sqrt{d}] \text { for } d \equiv 2,3 \quad \bmod 4 \\
D=\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] \text { for } d \equiv 1 \quad \bmod 4 .
\end{gathered}
$$

There is an onto ring homomorphism $\mathbb{Z}\left[t, t^{-1}\right] \rightarrow$ D, for $d<100$ and $G=D \rtimes \mathbb{Z}$ is residually nilpotent when

$$
d=2,3,10,13,15,23,26,29,35,53,77,82,85
$$

For $d=2,3,13,23,29,53$, and 77, any group para- G is isomorphic to G.
For $d=10,15,26,35,85$ there are two groups in each para-equivalence class.
For $G=\mathbb{Z}[\sqrt{82}] \rtimes \mathbb{Z}$, there are 4 groups in the para-equivalence class of G.

Classification Theorem

We call a submodule of $A \subset[G, G]_{S}$ an $\{S$-fractional submodule $\}$ if the inclusion induces $A_{S} \cong[G, G]_{S}$. We denote the set of S-fractional submodules of $[G, G]_{S}$ by

$$
\mathcal{F}\left([G, G]_{S}\right) .
$$

An automorphism of G_{S} determines an automorphism of $[G, G]_{S}$, and therefore an action of $\operatorname{Aut}\left(G_{S}\right)$ on $\mathcal{F}\left([G, G]_{S}\right)$. We term two fractional S-modules equivalent if such an induced automorphism of $[G, G]_{S}$ maps one onto the other.

Let $\mathcal{C} \ell(G)=\frac{\mathcal{F}\left([G, G]_{S}\right)}{\operatorname{Aut}\left(G_{S}\right)}$.
\{Isomorphism classes of groups

$$
\text { para - equivalent to } G\} \stackrel{1-1}{\stackrel{1}{\mathcal{C}} \mathcal{C} \ell(G)}
$$

