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@ Elliptic and hypoelliptic operators

© The case of S*
© The trace formula as a Lefschetz formula
@ RRG in Bott-Chern cohomology

© Conclusion
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Elliptic and hypoelliptic operators

Elliptic operators

e Differential operator P elliptic: principal symbol
o (z,€) invertible for £ # 0.
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Elliptic and hypoelliptic operators

Elliptic operators

e Differential operator P elliptic: principal symbol
o (z,€) invertible for £ # 0.
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Elliptic and hypoelliptic operators

Elliptic operators

e Differential operator P elliptic: principal symbol
o (z,€) invertible for £ # 0.

e X Riemannian manifold, —A*¥ elliptic, principal
symbol [£ .
e Laplacian on circle S?, —aa—;, symbol &£2.

e Ellipticity stable property by small deformation.
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Elliptic and hypoelliptic operators

Hypoelliptic operators

e Hypoellipticity weaker property.
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Elliptic and hypoelliptic operators

Hypoelliptic operators

e Hypoellipticity weaker property.
e Differential operator P hypoelliptic if Pu C*° on open
set O implies u C* on O.

@ An example is the operator of Kosmvoropos (1934)

1 9 0

2 Oy? You
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Elliptic and hypoelliptic operators

Hypoelliptic operators

e Hypoellipticity weaker property.

e Differential operator P hypoelliptic if Pu C*° on open
set O implies u C* on O.

@ An example is the operator of Kosmvoropos (1934)

1 9 0

2 Oy? Yor

@ The operator of Kolmogorov model of hypoelliptic
operators studied by Hormander.
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The main statement

X Riemannian, AX Laplacian on X.

The main statement

The elliptic operator —A*X /2 on X can be deformed to a
family of hypoelliptic operators Ly|p0
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family of hypoelliptic operators L;|p~o acting on total space
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Elliptic and hypoelliptic operators

The main statement

X Riemannian, AX Laplacian on X.

The main statement

The elliptic operator —A*X /2 on X can be deformed to a
family of hypoelliptic operators L;|p~o acting on total space
X of TX, which interpolates between —AX /2 for b = 0,
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Elliptic and hypoelliptic operators

The main statement

X Riemannian, AX Laplacian on X.

The main statement

The elliptic operator —A*X /2 on X can be deformed to a
family of hypoelliptic operators L;|p~o acting on total space
X of TX, which interpolates between —AX /2 for b = 0,
and generator Z of geodesic flow for b = 4o00.
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Remark

@ The statement does not make any sense...

el Bismut The hypoelliptic Laplacian
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Remark

@ The statement does not make any sense...

@ ...since the operators —AX /2 and Z act on different
spaces.
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Elliptic and hypoelliptic operators

Remark

@ The statement does not make any sense...

@ ...since the operators —AX /2 and Z act on different
spaces.

@ Deformation connects objects of analysis to geometric
objects.
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Elliptic and hypoelliptic operators

Remark

@ The statement does not make any sense...

@ ...since the operators —AX /2 and Z act on different
spaces.

@ Deformation connects objects of analysis to geometric
objects.

@ [t connects spectral invariants to closed geodesics, like
in Selberg’s trace formula.
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Elliptic and hypoelliptic operators

How does £, look like?
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Elliptic and hypoelliptic operators

How does £, look like?

e X total space of TX.
o H=1(-AT"+ Y|P - n) harmonic oscillator along
fibres T'X.
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Elliptic and hypoelliptic operators

How does £, look like?

e X total space of TX.
o H=1(-AT"+ Y|P - n) harmonic oscillator along
fibres T'X.

e Z generator of geodesic flow on X (Z ~ Y7 | Vi2).
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Elliptic and hypoelliptic operators

How does £, look like?

e X total space of TX.

o H=1(-AT"+ Y|P - n) harmonic oscillator along
fibres T'X.

o Z generator of geodesic flow on X (Z ~ > " YVi.2).

ox?
H Z
Oﬁb:hj—z—‘—
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Elliptic and hypoelliptic operators

How does £, look like?

X total space of TX.
H=1(-AT™+ Y|P - n) harmonic oscillator along
fibres T'X.

Z generator of geodesic flow on X (Z ~ Y7 Y:2;).
o L= b% — % + ...

... contains geometric terms.
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Elliptic and h;

How does £, look like?

e X total space of TX.

o H=1(-AT"+ Y|P - n) harmonic oscillator along
fibres T'X .

e Z generator of geodesic flow on X (Z ~ Y7 | Vi2).

o L= h% — % + ...

@ ... contains geometric terms.

e By Hormander, £, and % + L, hypoelliptic.
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Elliptic and hypoelliptic operators

How does £, look like?

e X total space of TX.

o H=1(-AT 4+|Y|® - n) harmonic oscillator along
fibres T'X.

e Z generator of geodesic flow on X (Z ~ Y7 | Vi2).

o L= b% — % + ...

@ ... contains geometric terms.

° By Hormander, £y and - + L hypoelliptic.

e L, Fokker-Planck operator.
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underlying analytic and geometric structures.

@ In certain cases, the full spectrum is preserved.
Three examples
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Elliptic and hypoelliptic operators

Our goal

Our goal is. ..
© To show that this deformation obtained by deforming
underlying analytic and geometric structures.

@ In certain cases, the full spectrum is preserved.
Three examples

@ Circle St.

@ Trace formula.
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© To show that this deformation obtained by deforming
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Three examples
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Elliptic and hypoelliptic operators

Our goal

Our goal is. ..
© To show that this deformation obtained by deforming
underlying analytic and geometric structures.

@ In certain cases, the full spectrum is preserved.
Three examples

@ Circle St.

@ Trace formula.

@ RRG in complex geometry.
Two key ideas:
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Elliptic and h;

Our goal

Our goal is. ..

© To show that this deformation obtained by deforming
underlying analytic and geometric structures.

@ In certain cases, the full spectrum is preserved.
Three examples

@ Circle St.

@ Trace formula.

@ RRG in complex geometry.
Two key ideas:
© I[ndex theory.
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Elliptic and h;

Our goal

Our goal is. ..

© To show that this deformation obtained by deforming
underlying analytic and geometric structures.

@ In certain cases, the full spectrum is preserved.
Three examples

@ Circle St.

@ Trace formula.

@ RRG in complex geometry.
Two key ideas:

© I[ndex theory.

@ Fourier transform.
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Why is S! important?

el Bismut The hypoelliptic Laplacian



The case of S!

Why is S! important?

@ Closed geodesics modelled on S*.
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Why is S! important?

@ Closed geodesics modelled on S*.

e One should expect that for S', the deformation is
trivial.
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Four identities

e l+1=2
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Four identities

e l+1=2
o (a+b)?=a%+2ab+ b2
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Four identities

e l+1=2
o (a+b)?=a%+2ab+ b2

_2/2 d
OJ‘Rey/2\/—Qy—W:1.
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Four identities

o l+1=2.

o (a+b)?=a%+2ab+ b2
—y2 d

[*] fRe y/2\/—2y—7r:1.

o f Zy£ y2/2\}iy7 6752/2.

2T
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Proof of last identity
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Proof of last identity
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_ e / o2 W _ e
R V2T

e [maginary translation y — y + i€ and analyticity of
2
eV /2,
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_ e / o2 W _ e
R V2T

e [maginary translation y — y + i€ and analyticity of
2
eV /2,

e Fourier + analyticity.
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The harmonic oscillator
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The harmonic oscillator

2\ 02
e H self-adjoint elliptic, Sp (H) = N.

e H=1 ( Py — 1) harmonic oscillator.
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The harmonic oscillator

2\ 02
e H self-adjoint elliptic, Sp (H) = N.

2
e Ground state =e~¥ /2,

e H=1 ( Py — 1) harmonic oscillator.
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A formal translation
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The case of S!

A formal translation

H

0
b2 ’

0

e Hypoelliptic Laplacian L;, =

Sl
8
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e Hypoelliptic Laplacian L;, =

b2
2 2 2
o L=~ + (v -03) —1) - 1
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e Hypoelliptic Laplacian L;, =

b2
2 2 2
o L=~ + (v -03) —1) - 1

e Make translation y — y + ba%'

Jean-Michel Bismut The hypoelliptic Laplacian



e Hypoelliptic Laplacian L;, =

b2

2 2 2
o L=~ + (v -03) —1) - 1
e Make translation y — y + ba%'

@ Translation ~ conjugation.
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A conjugation of L
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The case of S!

A conjugation of L

o M = ag—;y hyperbolic, €™ is not well defined.
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o M = ag—;y hyperbolic, €™ is not well defined.

e Conjugation identity

1 0? 102

bM 7 —bM 2
L - (= 1) ===
© e ( Y ) 2 0x?
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o M = ag—;y hyperbolic, €™ is not well defined.

e Conjugation identity

1 0? 102

bM 7 —bM 2
L - (= 1) ===
© e 2b2 ( Y ) 2 0x?

e L, hypoelliptic (Hérmander),
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A conjugation of L

o M = hyperbohc e?M is not well defined.

° Conjugatlon identity

1 0? 1 02
bM  —bM
L =— |- -1} —=-=.
© e 2b2 ( o2 v ) 2 0x?
e L, hypoelliptic (Hérmander), e®™ L,e=*M elliptic.
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A conjugation of L

o M = hyperbohc e?M is not well defined.
° Conjugatlon identity
1 0? 1 02
bM 7 —bM
L =— (- 1) - ==.
© e 2b2 ( o2 Ty ) 2 0x?
e L, hypoelliptic (Hérmander), e®™ L,e=*M elliptic.

Ly non self-adjoint, e?M Lye=*M self-adjoint.

(]
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Conjugation is legitimate
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Conjugation is legitimate

e Take (z,y) € S* x R.
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Conjugation is legitimate

e Take (z,y) € S* x R.

e By analyticity, y — y + 1b§ acts on Hermite
polynomials with Gaussian weight (eigenfunctions of

H).
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Conjugation is legitimate

e Take (z,y) € S* x R.

e By analyticity, y — y + 1b§ acts on Hermite
polynomials with Gaussian weight (eigenfunctions of
H).

@ [, can be explicitly diagonalized.
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Conjugation is legitimate

e Take (z,y) € S* x R.

e By analyticity, y — y + 1b§ acts on Hermite
polynomials with Gaussian weight (eigenfunctions of
H).

@ [, can be explicitly diagonalized.

e [ hypoelliptic non self-adjoint isospectral to
"M Lye*M elliptic self-adjoint.
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The spectrum of L
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The case of S!

The spectrum of L
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The spectrum of L

° Lb:#<—§—;+y2—1> —uo
o Sp(Ly) = 5 + {2k k € Z} is real. ..
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° Lb:#<—§—;+y2—1> —uo
o Sp(Ly) = 5 + {2k k € Z} is real. ..

@ ...in spite of the fact that when b — oo, —%{%
dominates b%.
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The spectrum of L

o Sp(Ly) = 5 + {2k k € Z} is real. ..
@ ...in spite of the fact that when b — oo, —%8@
dominates b%.

e In Sp(Ly), spectrum of —AS /2 remains rigidly
embedded.

8
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The spectrum of L

Lbzﬁ(—ga—;+y2—1> —~v0
Sp (Ly) = 33 + {2k*7% k € Z} is real. ..
o)

...in spite of the fact that when b — oo, —% =

dominates b%.

©
8

In Sp (L), spectrum of —AS' /2 remains rigidly
embedded.
Origin of rigidity is cohomological.
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The spectrum of L

Lbzﬁ(—ga—;+y2—1> —~v0
Sp (Ly) = 33 + {2k*7% k € Z} is real. ..
o)

...in spite of the fact that when b — oo, —% =

dominates b%.

©
8

In Sp (L), spectrum of —AS' /2 remains rigidly
embedded.

@ Origin of rigidity is cohomological.

@ When b — 0, only Sp (—ASI/Z) survives.
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The spectrum of L

2

o Sp(Ly) = 5 + {2k k € Z} is real. ..

@ ...in spite of the fact that when b — oo, —%{%
dominates b%.

e In Sp(Ly), spectrum of —AS /2 remains rigidly
embedded.

@ Origin of rigidity is cohomological.
@ When b — 0, only Sp (—ASI/Z) survives.
e When b — +o00, Ly ~ 1 2y —yam
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Poisson’s formula
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The case of S!

Poisson’s formula

@ We use supersymmetry to eliminate bﬁg dans Sp (Ly).
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The case of S!

Poisson’s formula

@ We use supersymmetry to eliminate bﬁg dans Sp (Ly).

o NAM®) deoree counting operator on A (R.).
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Poisson’s formula

@ We use supersymmetry to eliminate bﬁg dans Sp (Ly).

o NV®) degree counting operator on A" (R).

A (
o Ly =1L, + N ! has same spectrum as L.
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The case of S!

Poisson’s formula

@ We use supersymmetry to eliminate bﬁg dans Sp (Ly).

o NAM®) deoree counting operator on A (R.).

A'(R)
o Ly =L, + X 77— has same spectrum as Ly.

@ Remember ;!
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Poisson’s formula

@ We use supersymmetry to eliminate bﬁg dans Sp (Ly).

o NAM®) degree counting operator on A" (R).

A (
o Ly =1L, + N ! has same spectrum as L.

o Remember ﬁb.

o Trlexp (t0%/0x%/2)] = Tr, [exp (—tLy)].
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Poisson’s formula

@ We use supersymmetry to eliminate bﬁg dans Sp (Ly).
o NAM®) degree counting operator on A" (R).

A (
Ly =Ly + N " has same spectrum as L.

Remember ﬁb.

Tr [exp (t0?/02%/2)] = Trs [exp (—tLy)].

By making b — 400, we get Poisson’s formula par
interpolation.
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The trace formula as a Lefschetz formula

A compact manifold
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The trace formula as a Lefschetz formula

A compact manifold

e X compact Riemannian manifold.
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The trace formula as a Lefschetz formula

A compact manifold

e X compact Riemannian manifold.

e AX Laplacian on X.
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The trace formula as a Lefschetz formula

A compact manifold

e X compact Riemannian manifold.
e AX Laplacian on X.
e exp (tA%/2) heat operator on C* (X, R).

Jean-Michel Bismut The hypoelliptic Laplacian



The trace formula as a Lefschetz formula

A compact manifold

e X compact Riemannian manifold.

e AX Laplacian on X.

e exp (tA%/2) heat operator on C* (X, R).

@ exp (tAX / 2) can be considered as an element g of a
semigroup acting on C* (X, R).
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The trace formula as a Lefschetz formula

Trace and cohomology
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The trace formula as a Lefschetz formula

Trace and cohomology

e One will imagine that C*° (X, R) is the cohomology of
an acyclic complex (R, d). ..
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The trace formula as a Lefschetz formula

Trace and cohomology

e One will imagine that C*° (X, R) is the cohomology of
an acyclic complex (R, d). ..

e ...so that H°(R) = C*(X,R), and H' (R) = 0,4 > 0.
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The trace formula as a Lefschetz formula

Trace and cohomology

e One will imagine that C*° (X, R) is the cohomology of
an acyclic complex (R, d). ..

e ...so that H°(R) = C*(X,R), and H' (R) = 0,4 > 0.
o Tr¢ R [exp (tAX/2)] = trace Tr [g] of a group
element ¢ acting on cohomology of this complex.
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The trace formula as a Lefschetz formula

Trace and cohomology

e One will imagine that C*° (X, R) is the cohomology of
an acyclic complex (R, d). ..

e ...so that H°(R) = C*(X,R), and H' (R) = 0,4 > 0.

o Tr¢ R [exp (tAX/2)] = trace Tr [g] of a group
element ¢ acting on cohomology of this complex.

e Beware: This cohomology is now infinite dimensional.
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The trace formula as a Lefschetz formula

Two questions
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The trace formula as a Lefschetz formula

Two questions

@ Can one resolve C* (X, R) by an acyclic complex R on
which g = exp (tAX/Z) acts?
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The trace formula as a Lefschetz formula

Two questions

@ Can one resolve C* (X, R) by an acyclic complex R on
which g = exp (tAX/Z) acts?

@ Is there a Dirac operator Dg acting on R, and
commuting with g = exp (tAX/2) such that
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The trace formula as a Lefschetz formula

Two questions

@ Can one resolve C* (X, R) by an acyclic complex R on
which g = exp (tAX/Z) acts?

@ Is there a Dirac operator Dg acting on R, and
commuting with g = exp (tAX/2) such that

T R ] = Tr,™ [gexp (—D%/20%)] .
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The trace formula as a Lefschetz formula

Two questions

@ Can one resolve C* (X, R) by an acyclic complex R on
which g = exp (tAX/Z) acts?

@ Is there a Dirac operator Dg acting on R, and
commuting with g = exp (tAX/2) such that

T R ] = Tr,™ [gexp (—D%/20%)] .

e Analogue of formula of McKean-Singer
X (9) = Trs [gexp (—Dj/20%)]. ..
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The trace formula as a Lefschetz formula

Two questions

@ Can one resolve C* (X, R) by an acyclic complex R on
which g = exp (tAX/Z) acts?

@ Is there a Dirac operator Dg acting on R, and
commuting with g = exp (tAX/2) such that

T R ] = Tr,™ [gexp (—D%/20%)] .

e Analogue of formula of McKean-Singer
X (9) = Trs [gexp (—Dj/20%)]. ..
@ ...used in proof of Lefschetz fixed point formulas of

Atiyah-Bott.
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The trace formula as a Lefschetz formula

The answer is yes!
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The trace formula as a Lefschetz formula

The answer is yes!

o FE real vector bundle on X, £ total space of F.
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The trace formula as a Lefschetz formula

The answer is yes!

o FE real vector bundle on X, £ total space of F.

o Embed X as zero section of £.
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The trace formula as a Lefschetz formula

The answer is yes!

o FE real vector bundle on X, £ total space of F.
e Embed X as zero section of &£.
e R= (Q (E),d* ) de Rham complex along the fibres E.
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The trace formula as a Lefschetz formula

The answer is yes!

o FE real vector bundle on X, £ total space of F.

e Embed X as zero section of &£.

e R= (Q (E),d* ) de Rham complex along the fibres E.
e Its cohomology is just C* (X, R)...
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The trace formula as a Lefschetz formula

The answer is yes!

o FE real vector bundle on X, £ total space of F.

e Embed X as zero section of &£.

e R= (Q (E),d* ) de Rham complex along the fibres E.
e Its cohomology is just C* (X, R)...

e ...so that R resolves C* (X, R).
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The trace formula as a Lefschetz formula

The answer is no!
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The trace formula as a Lefschetz formula

The answer is no!

@ In general g = exp (tA*/2) does not act on R...
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The trace formula as a Lefschetz formula

The answer is no!

@ In general g = exp (tA*/2) does not act on R...

© ... and there is no Dirac operator Dr commuting with

Jean-Michel Bismut The hypoelliptic Laplacian



The trace formula as a Lefschetz formula

The case of locally symmetric spaces
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The trace formula as a Lefschetz formula

The case of locally symmetric spaces

e X locally symmetric.
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The trace formula as a Lefschetz formula

The case of locally symmetric spaces

e X locally symmetric.

e Casimir operator C? is in the centre of U (g).

Jean-Michel Bismut The hypoelliptic Laplacian



The trace formula as a Lefschetz formula

The case of locally symmetric spaces

e X locally symmetric.
e Casimir operator C? is in the centre of U (g).
e (9 acts on C™ (X, R) like —AX.
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The trace formula as a Lefschetz formula

The case of locally symmetric spaces

e X locally symmetric.
e Casimir operator C? is in the centre of U (g).
e (9 acts on C™ (X, R) like —AX.

@ There is some hope.
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The trace formula as a Lefschetz formula

The case of locally symmetric spaces

e X locally symmetric.

e Casimir operator C? is in the centre of U (g).
e (9 acts on C™ (X, R) like —AX.

@ There is some hope.

@ The problem is to construct the Dirac operator Dg.
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The trace formula as a Lefschetz formula

The case of S!
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The trace formula as a Lefschetz formula

The case of S!

e Our operators will act on C* (S' x R, A" (R)).
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The trace formula as a Lefschetz formula

The case of S!

e Our operators will act on C* (S' x R, A" (R)).
0 Dy =—dp+di+ 5 (dy +y N+d; +1y).
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The trace formula as a Lefschetz formula

The case of S!

e Our operators will act on C* (S' x R, A" (R)).
0 Dy =—dy+di+ 7 (dy+yA+d; +1iy).
o dy,+yN = e v*/2dev’/? Witten twist of d,.
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The trace formula as a Lefschetz formula

The case of S!

e Our operators will act on C* (S' x R, A" (R)).

0 Dy =—dp+di+ 5 (dy+y N+d +1y).

o dy,+yN = e v*/2dev’/? Witten twist of d,.

e Complex (C* (S* x R, A" (R)),d+ yA) is a resolution
of C* (SY, R).
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The trace formula as a Lefschetz formula

The case of S!

e Our operators will act on C* (S' x R, A" (R)).

0 Dy =—dp+di+ 5 (dy+y N+d +1y).

o dy,+yN = e v*/2dev’/? Witten twist of d,.

e Complex (C* (S* x R, A" (R)),d+ yA) is a resolution
of C> (SY, R).

o ﬁb - —%(.?—52 + %@g
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The trace formula as a Lefschetz formula

The case of S!

e Our operators will act on C* (S' x R, A" (R)).
0 Dy =—dp+di+ 5 (dy+y N+d +1y).
o dy,+yN = e v*/2dev’/? Witten twist of d,.
e Complex (C* (S* x R, A" (R)),d+ yA) is a resolution
of C> (SY, R).
o ﬁb - —%(.?—52 + %@g
NA(R)

o L, = # <—% + 9% — 1) + 5 - %y% already met!
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The trace formula as a Lefschetz formula

case of St

e Our operators will act on C* (S' x R, A" (R)).

0 Dy =—dp+di+ 5 (dy+y N+d +1y).

o dy,+yN = e v*/2dev’/? Witten twist of d,.

e Complex (C* (S* x R, A" (R)),d+ yA) is a resolution
of C> (SY, R).

o ﬁb - —%(.?—52 + %@g

o L, = # <—% + 9% — 1) + w — %y% already met!

o Tr [exp (tASl/2>] = Try [exp (—tLy)].
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The trace formula as a Lefschetz formula

case of St

e Our operators will act on C* (S' x R, A" (R)).

0 Dy =—dp+di+ 5 (dy+y N+d +1y).

o dy,+yN = e v*/2dev’/? Witten twist of d,.

e Complex (C* (S* x R, A" (R)),d+ yA) is a resolution
of C* (S1, R).

o Ly = # <—% + 1% — 1) + %;R) — %y% already met!

o Tr [exp (tASl/2>] = Ty [exp (—tLy)].

o Tr [exp (tASl/2)] = Trs [gexp (—tD7/2)] with

g = exp <taa—;/2).
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The trace formula as a Lefschetz formula

The symmetric space X

The hypoelliptic Laplacian



The trace formula as a Lefschetz formula

The symmetric space X

e G reductive group, K maximal compact, X = G/K
symmetric space.
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The trace formula as a Lefschetz formula

The symmetric space X

e G reductive group, K maximal compact, X = G/K
Sﬂ'llllll(‘rl’i(' Space.

e g=p @ ¢ Cartan splitting.
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The trace formula as a Lefschetz formula

Resolutions
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The trace formula as a Lefschetz formula

Resolutions

o R, replaced by &, R, replaced by g.
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The trace formula as a Lefschetz formula

Resolutions

o R, replaced by &, R, replaced by g.
e —d, + d; replaced by Dirac operator of Kostant DK |
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The trace formula as a Lefschetz formula

Resolutions

o R, replaced by &, R, replaced by g.
e —d, + d; replaced by Dirac operator of Kostant DK |
@ One should treat differently p and €.
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The trace formula as a Lefschetz formula

Resolutions

o R, replaced by &, R, replaced by g.
e —d, + d; replaced by Dirac operator of Kostant DK |
@ One should treat differently p and €.
o Dy, = DX ic([YP,VY]) + 2 (d° +YP A +d* +iys)
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The trace formula as a Lefschetz formula

Resolutions

o R, replaced by &, R, replaced by g.

e —d, + d; replaced by Dirac operator of Kostant DK |

@ One should treat differently p and €.

o Dy = DX +ic([YP,V]) + L2 (d° + Y A +d" +iy»)
_|_F ( dE— VA 4t +Z‘Y€)‘
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The trace formula as a Lefschetz formula

Resolutions

o R, replaced by &, R, replaced by g.

e —d, + d; replaced by Dirac operator of Kostant DK |

@ One should treat differently p and €.

o Dy = DX +ic([YP,V]) + L2 (d° + Y A +d" +iy»)
_|_F ( dE— VA 4t +Z‘Y€)‘

o DX Dirac operator of Kostant.
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The trace formula as a Lefschetz formula

The Dirac operator of Kostant
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The trace formula as a Lefschetz formula

The Dirac operator of Kostant

e U (g) enveloping algebra.
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The trace formula as a Lefschetz formula

The Dirac operator of Kostant

U (g) enveloping algebra.
¢ (g) Clifford algebra of (g, —B).
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The trace formula as a Lefschetz formula

The Dirac operator of Kostant

e U (g) enveloping algebra.
e ¢(g) Clifford algebra of (g, —B).
e A (g*) ¢(g)-module.
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The trace formula as a Lefschetz formula

The Dirac operator of Kostant

e U (g) enveloping algebra.

e ¢(g) Clifford algebra of (g, —B).

e A (g*) ¢(g)-module.

e x% € A3 (g*) with k9 (a,b,c) = B([a,b],c).
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The trace formula as a Lefschetz formula

The Dirac operator of Kostant

U (g) enveloping algebra.

¢ (g) Clifford algebra of (g, —B).

A (g*) ¢(g)-module.

k% € A3 (g*) with s (a,b,c) = B ([a,b],c).
DX e2(g) @ U(g).

e 6 o6 o
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The trace formula  Lefschetz formula

The Dirac operator of Kostant

(]
(]
(]
(]

U (g) enveloping algebra.

¢ (g) Clifford algebra of (g, —B).

A (g*) ¢(g)-module.

k% € A3 (g*) with s (a,b,c) = B ([a,b],c).
DX e2(g) @ U(g).

o DX =2(e))e; + $C(—kKY).
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The trace formula as a Lefschetz formula

The Dirac operator of Kostant

U (g) enveloping algebra.

¢ (g) Clifford algebra of (g, —B).

A (g*) ¢(g)-module.

k% € A3 (g*) with s (a,b,c) = B ([a,b],c).
D¥ ez(g) @ Uo)

o DX =¢(ef)e; + 1E(—r0).

o DK2 = _C94c. ..

e 6 o6 o
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The trace formula as a Lefschetz formula

The Dirac operator of Kostant

U (g) enveloping algebra.
¢ (g) Clifford algebra of (g, —B).

A (g*) ¢(g)-module.

k% € A3 (g*) with s (a,b,c) = B ([a,b],c).
DX €2(g)® Ul(g).

o DX =¢(ef)e; + 1E(—r0).
o DK2 = _C94c. ..

e ...analogue of (—d, + dZ)

e 6 o6 o

2_ 92
0z
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The trace formula as a Lefschetz formula

The hypoelliptic Laplacian
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The trace formula as a Lefschetz formula

The hypoelliptic Laplacian

o D, =D+ + Y2 (VPN A A iy)
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The trace formula as a Lefschetz formula

The hypoelliptic Laplacian

o Dy = DX +ic([YP,V]) + Y2 (dP + Y A+d* +iys)
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The trace formula as a Lefschetz formula

The hypoelliptic Laplacian

o Dy = DX +ic([YP,V]) + Y2 (dP + Y A+d* +iys)
+Y22 (—d = YEA +d +iye).
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The trace formula as a Lefschetz formula

The hypoelliptic Laplacian

o Dy = DX +ic([YP,V]) + Y2 (dP + Y A+d* +iys)
+Y22 (—d = YEA +d +iye).
o [ = %< DK2+@2>
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The trace formula as a Lefschetz formula

The hypoelliptic Laplacian

o Dy = DX +ic([YP,V]) + Y2 (dP + Y A+d* +iys)
+Y22 (—d = YEA +d +iye).
o [ = ( DK2+@2>

2
e Remember £, = —1.2; + 19?2
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The trace formula as a Lefschetz formula

The descent to X
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The trace formula as a Lefschetz formula

The descent to X

e Quotient the previous constructions by K, and descend
to X.
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The trace formula as a Lefschetz formula

The descent to X

e Quotient the previous constructions by K, and descend
to X.

e X carries the flat bundle TX @ N modelled on
g=pdtL
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The trace formula as a Lefschetz formula

The descent to X

e Quotient the previous constructions by K, and descend
to X.

e X carries the flat bundle TX @ N modelled on
g=pot

o X total space of TX & N.
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The trace formula as a Lefschetz formula

The descent to X

e Quotient the previous constructions by K, and descend
to X.

@ X carries the flat bundle TX & N modelled on
g=pot

o X total space of TX & N.

e Dy, L descend to D;¥, LX acting on
oo (2? A (T*X @ N*)).
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The trace formula as a Lefschetz formula

An infinite dimensional vector bundle on X
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The trace formula as a Lefschetz formula

An infinite dimensional vector bundle on X

e Our operators act on C'™ ()? TN (T*X & N*))
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The trace formula as a Lefschetz formula

An infinite dimensional vector bundle on X

e Our operators act on C'™ ()? TN (T*X & N*))

e Using Bargmann and ®@ox isomorphism

Ly (TX) ~ S (T*X), Ly (N) = S (N*)....
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The trace formula as a Lefschetz formula

An infinite dimensional vector bundle on X

e Our operators act on C'™ ()? TN (T*X & N*))

e Using Bargmann and ®@ox isomorphism
Ly (TX) >~ S (T*X), Ly (N) >~ 5 (N¥)...
@ ...so that our operators act on
Co (X, S (T*X N )@ AN (T*X & N*)).
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The trace formula as a Lefschetz formula

An infinite dimensional vector bundle on X

Our operators act on €™ ()? TN (T*X & N*))
Using Bargmann and ®@ox isomorphism

Ly (TX) >~ S (T*X), Ly (N) >~ 5 (N¥)...

... 80 that our operators act on

Co (X, S (T*X N )@ AN (T*X & N*)).

@ Geometric picture of enlarging the space equivalent to

representation picture of taking infinite dimensional
vector bundle.
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The trace formula as a Lefschetz formula

An infinite dimensional vector bundle on X

Our operators act on €™ ()? TN (T*X & N*))

Using Bargmann and ®@ox isomorphism

Ly (TX) >~ S (T*X), Ly (N) >~ 5 (N¥)...

... 80 that our operators act on

Co (X, S (T*X N )@ AN (T*X & N*)).

@ Geometric picture of enlarging the space equivalent to
representation picture of taking infinite dimensional
vector bundle.

(S (T*X @ N*)@ N (T X ® N*),d"™*®N) = fibrewise

algebraic de Rham complex.

Jean-Michel Bismut The hypoelliptic Laplacian



The trace formula as a Lefschetz formula

A formula for E;)Y
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The trace formula as a Lefschetz formula

A formula for E;)Y

0 involution of Cartan = 1 on T'X, N.
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The trace formula as a Lefschetz formula

A formula for E;)Y

¢ involution of Cartan = F1 on T'X, N.
OF =DE +ic ([Y™ YY) o+ e (YT¥ +ayN) L
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The trace formula as a Lefschetz formula

A formula for E;)Y

0 involution of Cartan = 1 on T'X, N.

DF = DE +ic ([Y™,YN]) ..+ e (Y™ +iv V). ...
1 5 1 NA(T*XeN*)
£ = g P (AT Y )
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A formula for E;)Y

¢ involution of Cartan = F1 on T'X, N.
OF =DE +ic ([Y™ YY) o+ e (YT¥ +ayN) L

ﬁi( — %l [YN,YTX} |2+21bQ (_ATX@N + ’Y’Q B TL)+

—i—% (VyTx +c (ad (YTX))—C (ad (YTX) + ifad (YN))> )
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A formula for E;)Y

¢ involution of Cartan = F1 on T'X, N.
OF =DE +ic ([Y™ YY) o+ e (YT¥ +ayN) L

ﬁi( — %l [YN,YTX} |2+21bQ (_ATX@N + ’Y’Q B TL)+

—i—% (VyTx +c (ad (YTX))—C (ad (YTX) + ifad (YN))> )

Making b — 0, L deforms % (—AX + c).
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The trace formula as a Lefschetz formula

A locally symmetric space
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The trace formula as a Lefschetz formula

A locally symmetric space

o Z =T\ X, with I" discrete cocompact.
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The trace formula as a Lefschetz formula

A locally symmetric space

o Z =T\ X, with I" discrete cocompact.
@ We have the identity. ..
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The trace formula as a Lefschetz formula

A locally symmetric space

o Z =T\ X, with I" discrete cocompact.
@ We have the identity. ..
o Tr” [exp (L (A% +¢))] = Tr, [exp (—tL7)].
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The trace formula as a Lefschetz formula

A locally symmetric space

o Z =T\ X, with I" discrete cocompact.

@ We have the identity. ..

o Tr” [exp (L (A% +¢))] = Tr, [exp (—tL7)].

o This identity splits as an identity of semisimple orbital
integrals.
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The trace formula as a Lefschetz formula

Semisimple orbital integrals
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The trace formula as a Lefschetz formula

Semisimple orbital integrals

@ v € (G semisimple.
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The trace formula as a Lefschetz formula

Semisimple orbital integrals

@ v € (G semisimple.
e For ¢t > 0, Trl [exp (—t (CQ’X + c) /2)}orbital integral
on adjoint orbit of ~:

/ Te” [p: (97" v9) ] dyg.
Z(N\G
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The trace formula as a Lefschetz formula

Existence of the orbital integral
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The trace formula as a Lefschetz formula

Existence of the orbital integral

Ipe (,2")| < Cexp (—=C'd? (x,2)).
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The trace formula as a Lefschetz formula

Existence of the orbital integral

[pi (2,2")] < Cexp (=C'd? (z,2")).
X (v) € X symmetric space for Z () minimizing d (z,yz).
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The trace formula as a Lefschetz formula

Existence of the orbital integral

[pi (2,2")] < Cexp (=C'd? (z,2")).
X (v) € X symmetric space for Z () minimizing d (z,yz).

xo X(Y) yxo

d¥, y1r)= Cc(1+ |1
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The trace formula as a Lefschetz formula

A fundamental identity

The hypoelliptic Laplacian



A fundamental identity

o Trl] [exp (—% (C’g’X + c))} = Tr [eXp (—t[,g()].

Jean-Michel Bismut The hypoelliptic Laplacian



The trace formula as a Lefschetz formula

A fundamental identity

o Trll [exp (=1 (C*¥ +¢))] = Tr,l [exp (—2L)].
e Make b — +o0.
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The trace formula as a Lefschetz formula

A fundamental identity

o Trll [exp (=1 (C*¥ +¢))] = Tr,l [exp (—2L)].
e Make b — +o0.

@ Because the geodesic flow becomes dominant. . .
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The trace formula as a Lefschetz formula

A fundamental identity

o Tl [exp (=3 (C™* +¢))] = Tr, [ [exp (—t£7)].
o Make b — +o0.
@ Because the geodesic flow becomes dominant. . .

@ ...the orbital integral localizes near X (v) C X.
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The trace formula as a Lefschetz formula

A fundamental identity

b [exp (—% (C’g’X + c))} = Tr [eXp (—t[,g()].
Make b — +oc.

Because the geodesic flow becomes dominant. . .
... the orbital integral localizes near X (v) C X.

Analytic difficulties connected with hyperbolicity of
geodesic flow.

Jean-Michel Bismut The hypoelliptic Laplacian



The trace formula as a Lefschetz formula

A fundamental identity

b [exp (—% (C’g’X + c))} = Tr [eXp (—t[,g()].
Make b — +oc.

Because the geodesic flow becomes dominant. . .
... the orbital integral localizes near X (v) C X.

Analytic difficulties connected with hyperbolicity of
geodesic flow.

e Analogy with Lefschetz fixed point formulas.
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The trace formula as a Lefschetz formula

The function J, (Y
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The trace formula as a Lefschetz formula

The function J, (¥

e y=c%1 Ad(k)a=a.
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The trace formula as a Lefschetz formula

The function J, (Y{)

e y=c%1 Ad(k)a=a.
°5(V)=p()DEM).
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The trace formula as a Lefschetz formula

The function J, (Y{)

e y=c%1 Ad(k)a=a.

°5(v)=p()Ot()
o J, (Y{) function on £ (v) =~ ratio of two Atiyah-Bott
for TX ~pand N ~ ¢.
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The trace formula as a Lefschetz formula

Do not look at this!
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The trace formula  Lefschetz formula

Do not look at this!

1 A (iad (Y5) lvn)
/2 /. £
‘det (1—Ad(7)) A (m (Yo)e(v)>

I, (Y5) =

|30L
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The trace formula  Lefschetz formula

Do not look at this!

1 A (iad (Y5) lvn)
/2 /. £
‘det (1—Ad(7)) A (m (Yo)e(v)>

I, (Y5) =

|30L

1
[det (T —Ad(k ) o)
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Do not look at this!

1 A (iad (YOE) |p(v))
‘det (1—Ad (7))

I, (Y5) =

|30L

1
[det (1—-Ad (k1)) |3§(7)
det (1 — exp (—iad (Yg)) Ad (k7)) It ) v
det (1~ exp (—iad (¥§)) Ad (1)) |

|pé €0
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The trace formula as a Lefschetz formula

The final formula
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The final formula

exp (— la)? /2t)
(2t )"/

L 08 [ () e (i ()]
exp (— |YOB‘2 /215)

Tel) [exp (£ (AY +¢) /2)] =

Ay}
(2mt)"*

The hypoelliptic Laplacian



The final formula

exp (— la)? /2t)
(2t )"/

L 08 [ () e (i ()]

exp (— |YOB‘2 /215)

Tel) [exp (£ (AY +¢) /2)] =

Ay}
(2mt)"*

Formula = Atiyah-Bott L (g) = [y A, (TX)ch, (E).
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The trace formula  Lefschetz formula

The final formula

exp (— la)? /2t)
(2t )"/

L 08 [ () e (i ()]

Tel) [exp (£ (AY +¢) /2)] =

2 dYy
exp (— Yy 215) .
Yal*/ (2rt)4/?
Formula ~ Atiyah-Bott L (g fX o (TX)ch, (E). If

G = SLs (R), one recovers Selberg s original trace formula.
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The trace formula  Lefschetz formula

The final formula

exp (— la)? /2t)
(2t )"/

L 08 [ () e (i ()]

Tel) [exp (£ (AY +¢) /2)] =

2 dYy
exp (— Yy 215) .
Yal*/ (2rt)4/?
Formula ~ Atiyah-Bott L (g fX o (TX)ch, (E). If

G = SLs (R), one recovers Selberg s original trace formula.
The formula extends to wave kernel.
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RRG in Bott-Chern cohomology

Bott-Chern cohomology
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RRG in Bott-Chern cohomology

Bott-Chern cohomology

@ S complex manifold of dimension n.

e Bott-Chern cohomology
(p q) ker d°NQ P9 (5,C)
(5,€) = 3 9sQr-1a-1)(5,C)"
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e S complex manifold of dimension n.

e Bott-Chern cohomology
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HBC <S> C) - gsaSQ(p—l,q—l)(S’c).

e In general Hy (X, C) strictly finer than Hpy (X, C).
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RRG in Bott-Chern cohomology

Bott-Chern cohomology

e S complex manifold of dimension n.

e Bott-Chern cohomology
(p,q) _ kerd®nQ®9)(5,0)
HBC <S> C) - gsaSQ(p—l,q—l)(S’c).

e In general Hy (X, C) strictly finer than Hpy (X, C).
° Hl(;:) (S,R) = ®0§p<n ’p) (S, R).
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RRG in Bott-Chern cohomology

Bott-Chern cohomology

S complex manifold of dimension n.

Bott-Chern cohomology
(p,q) _ kerd®nQ®9)(5,0)
HBC <S> C) - gsaSQ(p—l,q—l)(S’c).

In general Hy (X, C) strictly finer than Hpy (X, C).
Hisc! (S.R) = @yepen Hi (S R),

Holomorphic vector bundleb have characteristic classes
in H) (S,R).
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@ p: M — S proper submersion of complex manifolds,
with fibre X, = p~!(s).
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@ p: M — S proper submersion of complex manifolds,
with fibre X, = p~!(s).
@ F" holomorphic vector bundle on M.

Theorem
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A theorem of RRG

@ p: M — S proper submersion of complex manifolds,
with fibre X, = p~!(s).
@ F" holomorphic vector bundle on M.

Theorem

If R'p,F is locally free, then

chge (RpoF) = p. [Tdse (TX) chpe (F)] in H) (S, R) .
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A theorem of RRG

@ p: M — S proper submersion of complex manifolds,
with fibre X, = p~!(s).
@ F" holomorphic vector bundle on M.

Theorem

If R'p,F is locally free, then
chge (RpoF) = p. [Tdse (TX) chpe (F)] in H) (S, R) .

Also ¢; pe (det R'p.F) = p. [Tdpe (TX) chpe (F)](l,l)‘
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A theorem of RRG

@ p: M — S proper submersion of complex manifolds,
with fibre X, = p~!(s).
@ F" holomorphic vector bundle on M.

Theorem
If R'p,F is locally free, then

chge (RpoF) = p. [Tdse (TX) chpe (F)] in H) (S, R) .

Also ¢; pe (det R'p.F) = p. [Tdpe (TX) chpe (F)](l,l)‘

Remark
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RRG in Bott-Chern cohomology

A theorem of RRG

@ p: M — S proper submersion of complex manifolds,
with fibre X, = p~!(s).
@ F" holomorphic vector bundle on M.

Theorem
If R'p,F is locally free, then

chge (RpoF) = p. [Tdse (TX) chpe (F)] in H) (S, R) .

Also ¢; pe (det R'p.F) = p. [Tdpe (TX) chpe (F)](l,l)‘

Remark
This result is known if M is Kéhler.
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RRG in Bott-Chern cohomology

The space X

o In general, elliptic methods used in the context of
Apakesnor geometry do not work (no local index
theory).
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o [ will explain part of the construction when S is a
point.
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The space X

o In general, elliptic methods used in the context of
Apakesnor geometry do not work (no local index
theory).

o [ will explain part of the construction when S is a
point.

o Let m: X — X be total space of T'X, with fibre ﬁ,
y € TX tautological section, y € TX corresponding
section.
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RRG in Bott-Chern cohomology

The space X

o In general, elliptic methods used in the context of
Apakesnor geometry do not work (no local index
theory).

o [ will explain part of the construction when S is a
point.

o Let m: X — X be total space of T'X, with fibre ﬁ,
y € TX tautological section, y € TX corresponding
section.

o Al = " + 1, /b% acts on Q) (X, m* (A (T*X) ® F)).
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on X, and Hermitian duality fibrewise.
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Exotic Hodge theory

o On Q) (X, 7 (A (T*X)® F)). ..
@ ...introduce duality which is essentially Serre duality
on X, and Hermitian duality fibrewise.

° T(l’,@\) = (l‘, _?//\)
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RRG in Bott-Chern cohomology

Exotic Hodge theory

o On Q) (X, 7 (A (T*X)® F)). ..
@ ...introduce duality which is essentially Serre duality
on X, and Hermitian duality fibrewise.

o r(,7) = (¢,-7).
@ ¢ (s®t,s’®t’) =

/2 s o
2y (—1)p(p )/ Jy (r twgw(ﬁ)wf s A e g dugs.
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RRG in Bott-Chern cohomology

Exotic Hodge theory

On QO (X, 7 (A (T*X) ®@ F)). ..
.introduce duality which is essentially Serre duality
on X, and Hermitian duality fibrewise.

r(2,9) = (@.-9).
€ (s®t, s’®t’) =

/2 [ g s o
2y (—1)p(p )/ Jy (r twgw(ﬁ)wf s A e g dugs.

e ‘Laplacian’ associated with Ay, e hypoelliptic and looks

like . )
V 2 - .
b2 (A + V) + pVy Tt
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RRG in Bott-Chern cohomology

Exotic Hodge theory

o On Q) (X, 7 (A (T*X)® F)). ..
@ ...introduce duality which is essentially Serre duality
on X, and Hermitian duality fibrewise.

o r(,7) = (¢,-7).
@ ¢ (s®t,s’®t’) =
/2 s o
2y (—1)p(p )/ Jy (r twgw(ﬁ)wf s A e g dugs.

e ‘Laplacian’ associated with Ay, e hypoelliptic and looks
like

1 1
b2 (A + V) + pYY T
o If pure Serre dudhty was used, the ‘Laplacian’ would
be 0!
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This still fails!

e Proving RRG consists in finding an explicit limit as
t — 0 of certain supertraces.
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e Proving RRG consists in finding an explicit limit as
t — 0 of certain supertraces.

o This fails for elliptic Hodge theory.
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RRG in Bott-Chern cohomology

This still fails!

e Proving RRG consists in finding an explicit limit as
t — 0 of certain supertraces.

o This fails for elliptic Hodge theory.
o This still fails for the above hypoelliptic Hodge theory.
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RRG in Bott-Chern cohomology

This still fails!

e Proving RRG consists in finding an explicit limit as
t — 0 of certain supertraces.

o This fails for elliptic Hodge theory.
o This still fails for the above hypoelliptic Hodge theory.

e This works for a Hodge theory, in which the Kéahler
form w¥ is replaced by |Y|§T/;( wX.
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@ ...has some Fourier transform quality. ..

@ ...since it transforms a global object into a local one.
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Conclusion

RRG and Fourier transform

e Riemann-Roch x (F) = [, Td(T'X)ch(F)...
@ ...has some Fourier transform quality. ..
@ ...since it transforms a global object into a local one.

@ The theory of the hypoelliptic Laplacian is an attempt
to invert the Fourier transform.
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@ The principal symbol of the generator of the geodesic

flow Vy = 37 Vil
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@ The principal symbol of the generator of the geodesic
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e ...is given by i (Y. §)...
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Fourier transform and the geodesic flow

@ The principal symbol of the generator of the geodesic

flow Vy = 37 Vil

e ...is given by i (Y. §)...

e ...also appears in Fourier integral [, e7""¢ . . dY.
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Conclusion

Fourier transform and the geodesic flow

@ The principal symbol of the generator of the geodesic

flow Vy = 37 Vil

e ...is given by i (Y. §)...

e ...also appears in Fourier integral [, e7""¢ . . dY.

e Introducing the geodesic flow is a way of forcing
Fourier transform in the analysis.
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Conclusion

Hodge theory and the harmonic oscillator

e X C X zero section of total space of T'X.
e C*(X,R) ~ cohomology of fibrewise de Rham. ..

e ~ ground state of fibrewise harmonic oscillator
(physically counterintuitive).

@ The hypoelliptic Laplacian introduces extra degrees of
freedom in fibre direction. . .

@ ...which exist even in very rigid situations.
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