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Elliptic operators

Differential operator P elliptic: principal symbol
σ (x, ξ) invertible for ξ 6= 0.
X Riemannian manifold, −∆X elliptic, principal
symbol |ξ|2.
Laplacian on circle S1, − ∂2

∂x2 , symbol ξ2.
Ellipticity stable property by small deformation.
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Hypoelliptic operators

Hypoellipticity weaker property.
Differential operator P hypoelliptic if Pu C∞ on open
set O implies u C∞ on O.
An example is the operator of Колмогоров (1934)

K = −1

2

∂2

∂y2
− y ∂

∂x
.

The operator of Kolmogorov model of hypoelliptic
operators studied by Hörmander.
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The main statement

X Riemannian, ∆X Laplacian on X.

The main statement
The elliptic operator −∆X/2 on X can be deformed to a
family of hypoelliptic operators Lb|b>0 acting on total space
X of TX, which interpolates between −∆X/2 for b = 0,
and generator Z of geodesic flow for b = +∞.
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Remark

1 The statement does not make any sense...
2 . . . since the operators −∆X/2 and Z act on different

spaces.
3 Deformation connects objects of analysis to geometric

objects.
4 It connects spectral invariants to closed geodesics, like

in Selberg’s trace formula.
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How does Lb look like?

X total space of TX.
H = 1

2

(
−∆TX + |Y |2 − n

)
harmonic oscillator along

fibres TX.
Z generator of geodesic flow on X (Z '

∑n
i=1 Y

i ∂
∂xi

).
Lb = H

b2
− Z

b
+ . . .

. . . contains geometric terms.
By Hörmander, Lb and ∂

∂t
+ Lb hypoelliptic.

Lb Fokker-Planck operator.
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Our goal

Our goal is. . .

1 To show that this deformation obtained by deforming
underlying analytic and geometric structures.

2 In certain cases, the full spectrum is preserved.

Three examples

1 Circle S1.
2 Trace formula.
3 RRG in complex geometry.

Two key ideas:

1 Index theory.
2 Fourier transform.
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Why is S1 important?

Closed geodesics modelled on S1.
One should expect that for S1, the deformation is
trivial.
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Four identities

1 + 1 = 2.
(a+ b)2 = a2 + 2ab+ b2.∫
R
e−y

2/2 dy√
2π

= 1.∫
R
eiyξ−y

2/2 dy√
2π

= e−ξ
2/2.
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The harmonic oscillator

H = 1
2

(
− ∂2

∂y2 + y2 − 1
)
harmonic oscillator.

H self-adjoint elliptic, Sp (H) = N.
Ground state =e−y2/2.

Jean-Michel Bismut The hypoelliptic Laplacian 12 / 47



Elliptic and hypoelliptic operators
The case of S1

The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology

Conclusion
References

The harmonic oscillator

H = 1
2

(
− ∂2

∂y2 + y2 − 1
)
harmonic oscillator.

H self-adjoint elliptic, Sp (H) = N.
Ground state =e−y2/2.

Jean-Michel Bismut The hypoelliptic Laplacian 12 / 47



Elliptic and hypoelliptic operators
The case of S1

The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology

Conclusion
References

The harmonic oscillator

H = 1
2

(
− ∂2

∂y2 + y2 − 1
)
harmonic oscillator.

H self-adjoint elliptic, Sp (H) = N.

Ground state =e−y2/2.

Jean-Michel Bismut The hypoelliptic Laplacian 12 / 47



Elliptic and hypoelliptic operators
The case of S1

The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology

Conclusion
References

The harmonic oscillator

H = 1
2

(
− ∂2

∂y2 + y2 − 1
)
harmonic oscillator.

H self-adjoint elliptic, Sp (H) = N.
Ground state =e−y2/2.

Jean-Michel Bismut The hypoelliptic Laplacian 12 / 47



Elliptic and hypoelliptic operators
The case of S1

The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology

Conclusion
References

A formal translation

Hypoelliptic Laplacian Lb = H
b2
− y

b
∂
∂x
.

Lb = 1
2b2

(
− ∂2

∂y2 +
(
y − b ∂

∂x

)2 − 1
)
− 1

2
∂2

∂x2 .

Make translation y → y + b ∂
∂x
.

Translation ' conjugation.
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A conjugation of Lb

M = ∂2

∂x∂y
hyperbolic, ebM is not well defined.

Conjugation identity

ebMLbe
−bM =

1

2b2

(
− ∂2

∂y2
+ y2 − 1

)
− 1

2

∂2

∂x2
.

Lb hypoelliptic (Hörmander),

ebMLbe
−bM elliptic.

Lb non self-adjoint, ebMLbe−bM self-adjoint.
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Conjugation is legitimate

Take (x, y) ∈ S1 ×R.
By analyticity, y → y + ibξ acts on Hermite
polynomials with Gaussian weight (eigenfunctions of
H).
Lb can be explicitly diagonalized.
Lb hypoelliptic non self-adjoint isospectral to
ebMLbe

−bM elliptic self-adjoint.
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The spectrum of Lb

Lb = 1
2b2

(
− ∂2

∂y2 + y2 − 1
)
− y

b
∂
∂x
.

Sp (Lb) = N
b2

+ {2k2π2, k ∈ Z} is real. . .
. . . in spite of the fact that when b→∞, −y

b
∂
∂x

dominates H
b2
.

In Sp (Lb), spectrum of −∆S1
/2 remains rigidly

embedded.
Origin of rigidity is cohomological.

When b→ 0, only Sp
(
−∆S1

/2
)
survives.

When b→ +∞, Lb ' 1
2
y2 − y ∂

∂x
.
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Poisson’s formula

We use supersymmetry to eliminate N
b2

dans Sp (Lb).
NΛ·(R) degree counting operator on Λ· (R).

Lb = Lb + NΛ·(R)

b2
has same spectrum as Lb.

Remember Lb!
Tr [exp (t∂2/∂x2/2)] = Trs [exp (−tLb)].
By making b→ +∞, we get Poisson’s formula par
interpolation.
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Trace and cohomology

One will imagine that C∞ (X,R) is the cohomology of
an acyclic complex (R·, d). . .
. . . so that H0 (R) = C∞ (X,R), and H i (R) = 0, i > 0.
TrC

∞(X,R)
[
exp

(
t∆X/2

)]
= trace Tr [g] of a group

element g acting on cohomology of this complex.
Beware: This cohomology is now infinite dimensional.
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Two questions

1 Can one resolve C∞ (X,R) by an acyclic complex R on
which g = exp

(
t∆X/2

)
acts?

2 Is there a Dirac operator DR acting on R, and
commuting with g = exp

(
t∆X/2

)
such that

TrC
∞(X,R) [g] = Trs

R
[
g exp

(
−D2

R/2b
2
)]
.

Analogue of formula of McKean-Singer
χ (g) = Trs [g exp (−D2

R/2b
2)]. . .

. . . used in proof of Lefschetz fixed point formulas of
Atiyah-Bott.
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The answer is yes!

E real vector bundle on X, E total space of E.
Embed X as zero section of E .
R =

(
Ω· (E) , dE

)
de Rham complex along the fibres E.

Its cohomology is just C∞ (X,R)...
...so that R resolves C∞ (X,R).
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The answer is no!

1 In general g = exp
(
t∆X/2

)
does not act on R...

2 ... and there is no Dirac operator DR commuting with
g.
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The case of locally symmetric spaces

X locally symmetric.
Casimir operator Cg is in the centre of U (g).
Cg acts on C∞ (X,R) like −∆X .
There is some hope.
The problem is to construct the Dirac operator DR.
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The case of S1

Our operators will act on C∞ (S1 ×R,Λ· (R)).
Db = −dx + d∗x + 1

b

(
dy + y ∧+d∗y + iy

)
.

dy + y∧ = e−y
2/2dey

2/2 Witten twist of dy.
Complex (C∞ (S1 ×R,Λ· (R)) , d+ y∧) is a resolution
of C∞ (S1,R).
Lb = −1

2
∂2

∂x2 + 1
2
D2
b .

Lb = 1
2b2

(
− ∂2

∂y2 + y2 − 1
)

+ NΛ·(R)

b2
− 1

b
y ∂
∂x

already met!

Tr
[
exp

(
t∆S1

/2
)]

= Trs [exp (−tLb)].

Tr
[
exp

(
t∆S1

/2
)]

= Trs [g exp (−tD2
b/2)] with

g = exp
(
t ∂

2

∂x2/2
)
.
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The symmetric space X

G reductive group, K maximal compact, X = G/K
symmetric space.
g = p⊕ k Cartan splitting.

Jean-Michel Bismut The hypoelliptic Laplacian 25 / 47



Elliptic and hypoelliptic operators
The case of S1

The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology

Conclusion
References

The symmetric space X

G reductive group, K maximal compact, X = G/K
symmetric space.

g = p⊕ k Cartan splitting.

Jean-Michel Bismut The hypoelliptic Laplacian 25 / 47



Elliptic and hypoelliptic operators
The case of S1

The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology

Conclusion
References

The symmetric space X

G reductive group, K maximal compact, X = G/K
symmetric space.
g = p⊕ k Cartan splitting.

Jean-Michel Bismut The hypoelliptic Laplacian 25 / 47



Elliptic and hypoelliptic operators
The case of S1

The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology

Conclusion
References

Resolutions

Rx replaced by G, Ry replaced by g.

−dx + d∗x replaced by Dirac operator of Kostant D̂K .
One should treat differently p and k.
Db = D̂K + ic

([
Y p, Y k

])
+
√

2
b

(dp + Y p ∧+dp∗ + iY p)

+
√
−2
b

(
−dk − Y k ∧+dk∗ + iY k

)
.

D̂K Dirac operator of Kostant.
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The Dirac operator of Kostant

U (g) enveloping algebra.
ĉ (g) Clifford algebra of (g,−B).
Λ· (g∗) ĉ (g)-module.
κg ∈ Λ3 (g∗) with κg (a, b, c) = B ([a, b] , c).
D̂K ∈ ĉ (g)⊗ U (g).
D̂K = ĉ (e∗i ) ei + 1

2
ĉ (−κg).

D̂K,2 = −Cg + c. . .
. . . analogue of (−dx + d∗x)

2 = ∂2

∂x2 .
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ĉ (−κg).

D̂K,2 = −Cg + c. . .
. . . analogue of (−dx + d∗x)

2 = ∂2

∂x2 .

Jean-Michel Bismut The hypoelliptic Laplacian 27 / 47



Elliptic and hypoelliptic operators
The case of S1

The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology

Conclusion
References

The Dirac operator of Kostant

U (g) enveloping algebra.
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D̂K ∈ ĉ (g)⊗ U (g).
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The hypoelliptic Laplacian

Db = D̂K +

ic
([
Y p, Y k

])

+
√

2
b

(dp + Y p ∧+dp∗ + iY p)

+
√
−2
b

(
−dk − Y k ∧+dk∗ + iY k

)
.

Lb = 1
2

(
−D̂K,2 + D2

b

)
.

Remember Lb = −1
2
∂2

∂x2 + 1
2
D2
b .
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The descent to X

Quotient the previous constructions by K, and descend
to X.
X carries the flat bundle TX ⊕N modelled on
g = p⊕ k.
X̂ total space of TX ⊕N .
Db,Lb descend to DX

b ,LXb acting on
C∞

(
X̂ , π∗Λ· (T ∗X ⊕N∗)

)
.
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An infinite dimensional vector bundle on X

Our operators act on C∞
(
X̂ , π∗Λ· (T ∗X ⊕N∗)

)
.

Using Bargmann and Фок isomorphism
L2 (TX) ' S· (T ∗X) , L2 (N) ' S· (N∗). . .
. . . so that our operators act on
C∞ (X,S· (T ∗X ⊕N∗)⊗ Λ· (T ∗X ⊕N∗)).
Geometric picture of enlarging the space equivalent to
representation picture of taking infinite dimensional
vector bundle.(
S· (T ∗X ⊕N∗)⊗ Λ· (T ∗X ⊕N∗) , dTX⊕N

)
= fibrewise

algebraic de Rham complex.
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vector bundle.(
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A formula for LXb

θ involution of Cartan = ∓1 on TX,N .
DX
b = D̂K

b + ic
([
Y TX , Y N

])
. . .+ 1

b
ĉ
(
Y TX + iY N

)
. . .. . .

LXb =
1

2

∣∣[Y N , Y TX
]∣∣2+

1

2b2

(
−∆TX⊕N + |Y |2 − n

)
+
NΛ·(T ∗X⊕N∗)

b2

+
1

b

(
∇Y TX+ĉ

(
ad
(
Y TX

))
−c
(
ad
(
Y TX

)
+ iθad

(
Y N
)))

.

Making b→ 0, LXb deforms 1
2

(
−∆X + c

)
.
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A locally symmetric space

Z = Γ \X, with Γ discrete cocompact.
We have the identity. . .
TrZ

[
exp

(
t
2

(
∆Z + c

))]
= Trs

[
exp

(
−tLZb

)]
.

This identity splits as an identity of semisimple orbital
integrals.
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Semisimple orbital integrals

γ ∈ G semisimple.
For t > 0, Tr[γ]

[
exp

(
−t
(
Cg,X + c

)
/2
)]
orbital integral

on adjoint orbit of γ:∫
Z(γ)\G

TrE
[
pt
(
g−1γg

)]
dg.
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Existence of the orbital integral

|pt (x, x′)| ≤ C exp (−C ′d2 (x, x′)).
X (γ) ⊂ X symmetric space for Z (γ) minimizing d (x, γx).

x 0 xγ 0

Y Yγ

d(Y ,  Yγ ) ≥ C(1+ |Y |)

X (γ)
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A fundamental identity

Tr[γ]
[
exp

(
−1

2

(
Cg,X + c

))]
= Trs

[γ]
[
exp

(
−tLXb

)]
.

Make b→ +∞.
Because the geodesic flow becomes dominant. . .
. . . the orbital integral localizes near X (γ) ⊂ X.
Analytic difficulties connected with hyperbolicity of
geodesic flow.
Analogy with Lefschetz fixed point formulas.
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The function Jγ
(
Y k

0

)

γ = eak−1,Ad (k) a = a.
z (γ) = p (γ)⊕ k (γ).
Jγ
(
Y k

0

)
function on k (γ) ' ratio of two Atiyah-Bott

for TX ' p and N ' k.
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Do not look at this!

Jγ
(
Y k

0

)
=

1∣∣∣det (1− Ad (γ)) |z⊥0
∣∣∣1/2

Â
(
iad
(
Y k

0

)
|p(γ)

)
Â
(
iad
(
Y k

0

)
k(γ)

)
[

1

det (1− Ad (k−1)) |z⊥0 (γ)

det
(
1− exp

(
−iad

(
Y k

0

))
Ad (k−1)

)
|k⊥0 (γ)

det
(
1− exp

(
−iad

(
Y k

0

))
Ad (k−1)

)
|p⊥0 (γ)

]1/2

.
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The final formula

Tr[γ]
[
exp

(
t
(
∆X + c

)
/2
)]

=
exp

(
− |a|2 /2t

)
(2πt)p/2∫

k(γ)

Jγ
(
Y k

0

)
TrE

[
ρE
(
k−1
)

exp
(
−iρE

(
Y k

0

))]
exp

(
−
∣∣Y k

0

∣∣2 /2t) dY k
0

(2πt)q/2
.

Formula ' Atiyah-Bott L (g) =
∫
Xg
Âg (TX)chg (E). If

G = SL2 (R), one recovers Selberg’s original trace formula.
The formula extends to wave kernel.
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Âg (TX)chg (E). If

G = SL2 (R), one recovers Selberg’s original trace formula.

The formula extends to wave kernel.

Jean-Michel Bismut The hypoelliptic Laplacian 38 / 47



Elliptic and hypoelliptic operators
The case of S1

The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology

Conclusion
References

The final formula

Tr[γ]
[
exp

(
t
(
∆X + c

)
/2
)]

=
exp

(
− |a|2 /2t

)
(2πt)p/2∫

k(γ)

Jγ
(
Y k

0

)
TrE

[
ρE
(
k−1
)

exp
(
−iρE

(
Y k

0

))]
exp

(
−
∣∣Y k

0

∣∣2 /2t) dY k
0

(2πt)q/2
.

Formula ' Atiyah-Bott L (g) =
∫
Xg
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Bott-Chern cohomology

S complex manifold of dimension n.
Bott-Chern cohomology
H

(p,q)
BC (S,C) = ker dS∩Ω(p,q)(S,C)

∂
S
∂SΩ(p−1,q−1)(S,C)

.

In general H ·BC (X,C) strictly finer than H ·DR (X,C).

H
(=)
BC (S,R) =

⊕
0≤p≤nH

(p,p)
BC (S,R).

Holomorphic vector bundles have characteristic classes
in H(=)

BC (S,R).
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A theorem of RRG

p : M → S proper submersion of complex manifolds,
with fibre Xs = p−1(s).
F holomorphic vector bundle on M .

Theorem
If R·p∗F is locally free, then

chBC (R·p∗F ) = p∗ [TdBC (TX) chBC (F )] inH
(=)
BC (S,R) .

Also c1,BC (detR·p∗F ) = p∗ [TdBC (TX) chBC (F )](1,1).

Remark
This result is known if M is Kähler.
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The space X

In general, elliptic methods used in the context of
Аракелов geometry do not work (no local index
theory).
I will explain part of the construction when S is a
point.
Let π : X → X be total space of TX, with fibre T̂X,
ŷ ∈ T̂X tautological section, y ∈ TX corresponding
section.
A′′b = ∂

X
+ iy/b

2 acts on Ω(0,·) (X , π∗ (Λ· (T ∗X)⊗ F )).
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Exotic Hodge theory

On Ω(0,·) (X , π∗ (Λ· (T ∗X)⊗ F )). . .
. . . introduce duality which is essentially Serre duality
on X, and Hermitian duality fibrewise.
r (x, ŷ) = (x,−ŷ).
ε
(
s⊗̂t, s′⊗̂t′

)
=

in

(2π)2n (−1)p(p+1)/2 ∫
X 〈r

∗t, t′〉
g

Λ·(T̂∗X)⊗F
r∗s ∧ e−iωXs′dvT̂X .

‘Laplacian’ associated with A′′b , ε hypoelliptic and looks
like

1

2b2

(
−∆V

gT̂X + |Y |2gTX

)
+

1

b
∇Y + ·

If pure Serre duality was used, the ‘Laplacian’ would
be 0!
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Exotic Hodge theory
On Ω(0,·) (X , π∗ (Λ· (T ∗X)⊗ F )). . .
. . . introduce duality which is essentially Serre duality
on X, and Hermitian duality fibrewise.
r (x, ŷ) = (x,−ŷ).
ε
(
s⊗̂t, s′⊗̂t′

)
=

in

(2π)2n (−1)p(p+1)/2 ∫
X 〈r

∗t, t′〉
g

Λ·(T̂∗X)⊗F
r∗s ∧ e−iωXs′dvT̂X .

‘Laplacian’ associated with A′′b , ε hypoelliptic and looks
like

1

2b2
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b
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This still fails!

Proving RRG consists in finding an explicit limit as
t→ 0 of certain supertraces.
This fails for elliptic Hodge theory.
This still fails for the above hypoelliptic Hodge theory.
This works for a Hodge theory, in which the Kähler
form ωX is replaced by |Y |2

gT̂X ω
X .
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RRG and Fourier transform

Riemann-Roch χ (F ) =
∫
X

Td (TX) ch (F ). . .
. . . has some Fourier transform quality. . .
. . . since it transforms a global object into a local one.
The theory of the hypoelliptic Laplacian is an attempt
to invert the Fourier transform.
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Fourier transform and the geodesic flow

The principal symbol of the generator of the geodesic
flow ∇Y '

∑n
i=1 Y

i ∂
∂xi

. . .
. . . is given by i 〈Y, ξ〉. . .
. . . also appears in Fourier integral

∫
Rn e

−i〈Y,ξ〉 . . . dY .
Introducing the geodesic flow is a way of forcing
Fourier transform in the analysis.
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Hodge theory and the harmonic oscillator

X ⊂ X zero section of total space of TX.
C∞ (X,R) ' cohomology of fibrewise de Rham. . .
' ground state of fibrewise harmonic oscillator
(physically counterintuitive).
The hypoelliptic Laplacian introduces extra degrees of
freedom in fibre direction. . .
. . . which exist even in very rigid situations.
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