The hypoelliptic Laplacian

Jean-Michel Bismut

Université Paris-Sud, Orsay

For Professor A.H. Паршин

1 Elliptic and hypoelliptic operators

- 2 The case of S^1
- (3) The trace formula as a Lefschetz formula
- 4 RRG in Bott-Chern cohomology

5 Conclusion

Elliptic and hypoelliptic operators The case of S^1

The case of S¹ The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

Elliptic and hypoelliptic operators The case of S^1

The case of S¹ The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

Elliptic operators

• Differential operator P elliptic: principal symbol $\sigma(x,\xi)$ invertible for $\xi \neq 0$.

Elliptic and hypoelliptic operators The case of S^1 trace formula as a Lefschetz formula

RRG in Bott-Chern cohomology Conclusion References

- Differential operator P elliptic: principal symbol $\sigma(x,\xi)$ invertible for $\xi \neq 0$.
- X Riemannian manifold, $-\Delta^X$ elliptic, principal symbol $|\xi|^2$.

Elliptic and hypoelliptic operators The case of S^1 trace formula as a Lefschetz formula

RRG in Bott-Chern cohomology Conclusion References

- Differential operator P elliptic: principal symbol $\sigma(x,\xi)$ invertible for $\xi \neq 0$.
- X Riemannian manifold, $-\Delta^X$ elliptic, principal symbol $|\xi|^2$.
- Laplacian on circle S^1 , $-\frac{\partial^2}{\partial x^2}$, symbol ξ^2 .

Elliptic and hypoelliptic operators The case of S^1 trace formula as a Lefschetz formula

RRG in Bott-Chern cohomology Conclusion References

- Differential operator P elliptic: principal symbol $\sigma(x,\xi)$ invertible for $\xi \neq 0$.
- X Riemannian manifold, $-\Delta^X$ elliptic, principal symbol $|\xi|^2$.
- Laplacian on circle S^1 , $-\frac{\partial^2}{\partial x^2}$, symbol ξ^2 .
- Ellipticity stable property by small deformation.

Elliptic and hypoelliptic operators The case of S^1

The case of S^1 The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

Hypoelliptic operators

References

Hypoelliptic operators

• Hypoellipticity weaker property.

Hypoelliptic operators

- Hypoellipticity weaker property.
- Differential operator P hypoelliptic if $Pu C^{\infty}$ on open set \mathcal{O} implies $u C^{\infty}$ on \mathcal{O} .

Hypoelliptic operators

- Hypoellipticity weaker property.
- Differential operator P hypoelliptic if $Pu \ C^{\infty}$ on open set \mathcal{O} implies $u \ C^{\infty}$ on \mathcal{O} .
- An example is the operator of Колмогоров (1934)

$$K = -\frac{1}{2}\frac{\partial^2}{\partial y^2} - y\frac{\partial}{\partial x}.$$

Hypoelliptic operators

- Hypoellipticity weaker property.
- Differential operator P hypoelliptic if $Pu C^{\infty}$ on open set \mathcal{O} implies $u C^{\infty}$ on \mathcal{O} .
- An example is the operator of Колмогоров (1934)

$$K = -\frac{1}{2}\frac{\partial^2}{\partial y^2} - y\frac{\partial}{\partial x}.$$

• The operator of Kolmogorov model of hypoelliptic operators studied by Hörmander.

Elliptic and hypoelliptic operators The case of S^1

The case of S¹ The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

The main statement

Elliptic and hypoelliptic operators The case of S^1

The case of S¹ The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

The main statement

X Riemannian, Δ^X Laplacian on X.

Elliptic and hypoelliptic operators The case of S^1 The trace formula as a Lefschetz formula

The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

The main statement

X Riemannian, Δ^X Laplacian on X.

The main statement

References

The main statement

X Riemannian, Δ^X Laplacian on X.

The main statement

The elliptic operator $-\Delta^X/2$ on X can be deformed

The main statement

X Riemannian, Δ^X Laplacian on X.

The main statement

The elliptic operator $-\Delta^X/2$ on X can be deformed to a family of hypoelliptic operators $\mathcal{L}_b|_{b>0}$

The main statement

X Riemannian, Δ^X Laplacian on X.

The main statement

The elliptic operator $-\Delta^X/2$ on X can be deformed to a family of hypoelliptic operators $\mathcal{L}_b|_{b>0}$ acting on total space \mathcal{X} of TX,

The main statement

X Riemannian, Δ^X Laplacian on X.

The main statement

The elliptic operator $-\Delta^X/2$ on X can be deformed to a family of hypoelliptic operators $\mathcal{L}_b|_{b>0}$ acting on total space \mathcal{X} of TX, which interpolates between $-\Delta^X/2$ for b = 0,

The main statement

X Riemannian, Δ^X Laplacian on X.

The main statement

The elliptic operator $-\Delta^X/2$ on X can be deformed to a family of hypoelliptic operators $\mathcal{L}_b|_{b>0}$ acting on total space \mathcal{X} of TX, which interpolates between $-\Delta^X/2$ for b = 0, and generator Z of geodesic flow for $b = +\infty$.

Elliptic and hypoelliptic operators The case of S^1

The case of S¹ The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

Elliptic and hypoelliptic operators

The case of S^1 The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

• The statement does not make any sense...

Elliptic and hypoelliptic operators The case of S^1 te trace formula as a Lefschetz formula RRG in Bott-Chern cohomology

Remark

- The statement does not make any sense...
- ... since the operators $-\Delta^X/2$ and Z act on different spaces.

RRG in Bott-Chern cohomology Conclusion References

- The statement does not make any sense...
- \bigcirc ... since the operators $-\Delta^X/2$ and Z act on different spaces.
- Deformation connects objects of analysis to geometric objects.

Elliptic and hypoelliptic operators The case of S¹ trace formula as a Lefschetz formula BBC in Bott Charn cohomology

RRG in Bott-Chern cohomology Conclusion References

Remark

- The statement does not make any sense...
- \bigcirc ... since the operators $-\Delta^X/2$ and Z act on different spaces.
- Objects of analysis to geometric objects.
- It connects spectral invariants to closed geodesics, like in Selberg's trace formula.

Elliptic and hypoelliptic operators The case of S^1

The case of S^1 The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

Elliptic and hypoelliptic operators

The case of S^1 The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

How does \mathcal{L}_b look like?

• \mathcal{X} total space of TX.

- \mathcal{X} total space of TX.
- $H = \frac{1}{2} \left(-\Delta^{TX} + |Y|^2 n \right)$ harmonic oscillator along fibres TX.

- \mathcal{X} total space of TX.
- $H = \frac{1}{2} \left(-\Delta^{TX} + |Y|^2 n \right)$ harmonic oscillator along fibres TX.
- Z generator of geodesic flow on \mathcal{X} $(Z \simeq \sum_{i=1}^{n} Y^{i} \frac{\partial}{\partial x^{i}})$.

- \mathcal{X} total space of TX.
- $H = \frac{1}{2} \left(-\Delta^{TX} + |Y|^2 n \right)$ harmonic oscillator along fibres TX.
- Z generator of geodesic flow on \mathcal{X} $(Z \simeq \sum_{i=1}^{n} Y^{i} \frac{\partial}{\partial r^{i}})$.

•
$$\mathcal{L}_b = \frac{H}{b^2} - \frac{Z}{b} + \dots$$

- \mathcal{X} total space of TX.
- $H = \frac{1}{2} \left(-\Delta^{TX} + |Y|^2 n \right)$ harmonic oscillator along fibres TX.
- Z generator of geodesic flow on \mathcal{X} $(Z \simeq \sum_{i=1}^{n} Y^{i} \frac{\partial}{\partial r^{i}})$.
- $\mathcal{L}_b = \frac{H}{b^2} \frac{Z}{b} + \dots$
- ... contains geometric terms.

- \mathcal{X} total space of TX.
- $H = \frac{1}{2} \left(-\Delta^{TX} + |Y|^2 n \right)$ harmonic oscillator along fibres TX.
- Z generator of geodesic flow on \mathcal{X} $(Z \simeq \sum_{i=1}^{n} Y^{i} \frac{\partial}{\partial r^{i}})$.
- $\mathcal{L}_b = \frac{H}{b^2} \frac{Z}{b} + \dots$
- ... contains geometric terms.
- By Hörmander, \mathcal{L}_b and $\frac{\partial}{\partial t} + \mathcal{L}_b$ hypoelliptic.

- \mathcal{X} total space of TX.
- $H = \frac{1}{2} \left(-\Delta^{TX} + |Y|^2 n \right)$ harmonic oscillator along fibres TX.
- Z generator of geodesic flow on \mathcal{X} $(Z \simeq \sum_{i=1}^{n} Y^{i} \frac{\partial}{\partial r^{i}})$.
- $\mathcal{L}_b = \frac{H}{b^2} \frac{Z}{b} + \dots$
- ... contains geometric terms.
- By Hörmander, \mathcal{L}_b and $\frac{\partial}{\partial t} + \mathcal{L}_b$ hypoelliptic.
- \mathcal{L}_b Fokker-Planck operator.

Elliptic and hypoelliptic operators The case of S^1

The case of S¹ The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

Elliptic and hypoelliptic operators The case of S^1

The case of S^1 The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

Our goal is...

Our goal is...

• To show that this deformation obtained by deforming underlying analytic and geometric structures.

Our goal is...

- To show that this deformation obtained by deforming underlying analytic and geometric structures.
- **2** In certain cases, the full spectrum is preserved.

Our goal is...

- To show that this deformation obtained by deforming underlying analytic and geometric structures.
- **2** In certain cases, the full spectrum is preserved.

Three examples

Our goal is...

- To show that this deformation obtained by deforming underlying analytic and geometric structures.
- **2** In certain cases, the full spectrum is preserved.

Three examples

• Circle S^1 .

Our goal is...

- To show that this deformation obtained by deforming underlying analytic and geometric structures.
- **2** In certain cases, the full spectrum is preserved.

Three examples

- Circle S^1 .
- 2 Trace formula.

Our goal is...

- To show that this deformation obtained by deforming underlying analytic and geometric structures.
- **2** In certain cases, the full spectrum is preserved.

Three examples

- Circle S^1 .
- 2 Trace formula.
- **8 RRG** in complex geometry.

Our goal is...

- To show that this deformation obtained by deforming underlying analytic and geometric structures.
- **2** In certain cases, the full spectrum is preserved.

Three examples

- Circle S^1 .
- 2 Trace formula.
- **8 RRG** in complex geometry.

Two key ideas:

Our goal is...

- To show that this deformation obtained by deforming underlying analytic and geometric structures.
- **2** In certain cases, the full spectrum is preserved.

Three examples

- Circle S^1 .
- ② Trace formula.
- **8** RRG in complex geometry.

Two key ideas:

Index theory.

Our goal is...

- To show that this deformation obtained by deforming underlying analytic and geometric structures.
- **2** In certain cases, the full spectrum is preserved.

Three examples

- Circle S^1 .
- ② Trace formula.
- **8 RRG** in complex geometry.

Two key ideas:

- Index theory.
- Fourier transform.

Why is S^1 important?

Why is S^1 important?

• Closed geodesics modelled on S^1 .

Why is S^1 important?

- Closed geodesics modelled on S^1 .
- One should expect that for S^1 , the deformation is trivial.

Four identities

• 1 + 1 = 2.

Jean-Michel Bismut The hypoelliptic Laplacian

•
$$1 + 1 = 2$$
.
• $(a + b)^2 = a^2 + 2ab + b^2$.
• $\int_{\mathbf{R}} e^{-y^2/2} \frac{dy}{\sqrt{2\pi}} = 1$.

•
$$1 + 1 = 2$$
.
• $(a + b)^2 = a^2 + 2ab + b^2$.
• $\int_{\mathbf{R}} e^{-y^2/2} \frac{dy}{\sqrt{2\pi}} = 1$.
• $\int_{\mathbf{R}} e^{iy\xi - y^2/2} \frac{dy}{\sqrt{2\pi}} = e^{-\xi^2/2}$.

Proof of last identity

Proof of last identity

۲

$$\int_{\mathbf{R}} e^{iy\xi - y^2/2} \frac{dy}{\sqrt{2\pi}} = e^{-\xi^2/2} \int_{\mathbf{R}} e^{-(y - i\xi)^2/2} \frac{dy}{\sqrt{2\pi}}$$

Proof of last identity

 $\int_{\mathbf{R}} e^{iy\xi - y^2/2} \frac{dy}{\sqrt{2\pi}} = e^{-\xi^2/2} \int_{\mathbf{R}} e^{-(y - i\xi)^2/2} \frac{dy}{\sqrt{2\pi}}$ $= e^{-\xi^2/2} \int_{\mathbf{R}} e^{-y^2/2} \frac{dy}{\sqrt{2\pi}} = e^{-\xi^2/2}.$

Proof of last identity

• $\int_{\mathbf{R}} e^{iy\xi - y^2/2} \frac{dy}{\sqrt{2\pi}} = e^{-\xi^2/2} \int_{\mathbf{R}} e^{-(y - i\xi)^2/2} \frac{dy}{\sqrt{2\pi}}$ • $= e^{-\xi^2/2} \int_{\mathbf{R}} e^{-y^2/2} \frac{dy}{\sqrt{2\pi}} = e^{-\xi^2/2}.$

• Imaginary translation $y \to y + i\xi$ and analyticity of $e^{-y^2/2}$.

Proof of last identity

• $\int_{\mathbf{R}} e^{iy\xi - y^2/2} \frac{dy}{\sqrt{2\pi}} = e^{-\xi^2/2} \int_{\mathbf{R}} e^{-(y - i\xi)^2/2} \frac{dy}{\sqrt{2\pi}}$ • $= e^{-\xi^2/2} \int_{\mathbf{R}} e^{-y^2/2} \frac{dy}{\sqrt{2\pi}} = e^{-\xi^2/2}.$

- Imaginary translation $y \to y + i\xi$ and analyticity of $e^{-y^2/2}$.
- Fourier + analyticity.

The harmonic oscillator

The harmonic oscillator

•
$$H = \frac{1}{2} \left(-\frac{\partial^2}{\partial y^2} + y^2 - 1 \right)$$
 harmonic oscillator.

The harmonic oscillator

•
$$H = \frac{1}{2} \left(-\frac{\partial^2}{\partial y^2} + y^2 - 1 \right)$$
 harmonic oscillator.

• H self-adjoint elliptic, Sp(H) = N.

The harmonic oscillator

•
$$H = \frac{1}{2} \left(-\frac{\partial^2}{\partial y^2} + y^2 - 1 \right)$$
 harmonic oscillator.

•
$$H$$
 self-adjoint elliptic, $Sp(H) = N$.

• Ground state
$$=e^{-y^2/2}$$
.

A formal translation

A formal translation

• Hypoelliptic Laplacian $L_b = \frac{H}{b^2} - \frac{y}{b} \frac{\partial}{\partial x}$.

A formal translation

• Hypoelliptic Laplacian
$$L_b = \frac{H}{b^2} - \frac{y}{b} \frac{\partial}{\partial x}$$
.
• $L_b = \frac{1}{2b^2} \left(-\frac{\partial^2}{\partial y^2} + \left(y - b \frac{\partial}{\partial x} \right)^2 - 1 \right) - \frac{1}{2} \frac{\partial^2}{\partial x^2}$.

A formal translation

• Hypoelliptic Laplacian $L_b = \frac{H}{b^2} - \frac{y}{b} \frac{\partial}{\partial x}$.

•
$$L_b = \frac{1}{2b^2} \left(-\frac{\partial^2}{\partial y^2} + \left(y - b \frac{\partial}{\partial x} \right)^2 - 1 \right) - \frac{1}{2} \frac{\partial^2}{\partial x^2}.$$

• Make translation $y \to y + b \frac{\partial}{\partial x}$.

A formal translation

• Hypoelliptic Laplacian $L_b = \frac{H}{b^2} - \frac{y}{b} \frac{\partial}{\partial x}$.

•
$$L_b = \frac{1}{2b^2} \left(-\frac{\partial^2}{\partial y^2} + \left(y - b \frac{\partial}{\partial x} \right)^2 - 1 \right) - \frac{1}{2} \frac{\partial^2}{\partial x^2}.$$

- Make translation $y \to y + b \frac{\partial}{\partial x}$.
- Translation \simeq conjugation.

A conjugation of L_b

A conjugation of L_b

•
$$M = \frac{\partial^2}{\partial x \partial y}$$
 hyperbolic, e^{bM} is not well defined.

A conjugation of L_b

M = \$\frac{\partial^2}{\partial x \partial y}\$ hyperbolic, \$e^{bM}\$ is not well defined.
Conjugation identity

$$e^{bM}L_be^{-bM} = \frac{1}{2b^2}\left(-\frac{\partial^2}{\partial y^2} + y^2 - 1\right) - \frac{1}{2}\frac{\partial^2}{\partial x^2}.$$

A conjugation of L_b

M = \$\frac{\partial^2}{\partial x\partial y}\$ hyperbolic, \$e^{bM}\$ is not well defined.
Conjugation identity

$$e^{bM}L_be^{-bM} = \frac{1}{2b^2}\left(-\frac{\partial^2}{\partial y^2} + y^2 - 1\right) - \frac{1}{2}\frac{\partial^2}{\partial x^2}.$$

• L_b hypoelliptic (Hörmander),

A conjugation of L_b

M = \$\frac{\partial^2}{\partial x\partial y}\$ hyperbolic, \$e^{bM}\$ is not well defined.
Conjugation identity

$$e^{bM}L_be^{-bM} = \frac{1}{2b^2}\left(-\frac{\partial^2}{\partial y^2} + y^2 - 1\right) - \frac{1}{2}\frac{\partial^2}{\partial x^2}.$$

• L_b hypoelliptic (Hörmander), $e^{bM}L_be^{-bM}$ elliptic.

A conjugation of L_b

M = \$\frac{\partial^2}{\partial x \partial y}\$ hyperbolic, \$e^{bM}\$ is not well defined.
Conjugation identity

$$e^{bM}L_be^{-bM} = \frac{1}{2b^2}\left(-\frac{\partial^2}{\partial y^2} + y^2 - 1\right) - \frac{1}{2}\frac{\partial^2}{\partial x^2}.$$

- L_b hypoelliptic (Hörmander), $e^{bM}L_be^{-bM}$ elliptic.
- L_b non self-adjoint, $e^{bM}L_be^{-bM}$ self-adjoint.
Conjugation is legitimate

• Take $(x, y) \in S^1 \times \mathbf{R}$.

- Take $(x, y) \in S^1 \times \mathbf{R}$.
- By analyticity, y → y + ibξ acts on Hermite polynomials with Gaussian weight (eigenfunctions of H).

- Take $(x, y) \in S^1 \times \mathbf{R}$.
- By analyticity, y → y + ibξ acts on Hermite polynomials with Gaussian weight (eigenfunctions of H).
- L_b can be explicitly diagonalized.

- Take $(x, y) \in S^1 \times \mathbf{R}$.
- By analyticity, y → y + ibξ acts on Hermite polynomials with Gaussian weight (eigenfunctions of H).
- L_b can be explicitly diagonalized.
- L_b hypoelliptic non self-adjoint isospectral to $e^{bM}L_be^{-bM}$ elliptic self-adjoint.

•
$$L_b = \frac{1}{2b^2} \left(-\frac{\partial^2}{\partial y^2} + y^2 - 1 \right) - \frac{y}{b} \frac{\partial}{\partial x}.$$

The spectrum of L_b

•
$$L_b = \frac{1}{2b^2} \left(-\frac{\partial^2}{\partial y^2} + y^2 - 1 \right) - \frac{y}{b} \frac{\partial}{\partial x}.$$

• $\operatorname{Sp}(L_b) = \frac{\mathbf{N}}{b^2} + \{2k^2\pi^2, k \in \mathbf{Z}\}$ is real..

.

•
$$L_b = \frac{1}{2b^2} \left(-\frac{\partial^2}{\partial y^2} + y^2 - 1 \right) - \frac{y}{b} \frac{\partial}{\partial x}.$$

- Sp $(L_b) = \frac{\mathbf{N}}{b^2} + \{2k^2\pi^2, k \in \mathbf{Z}\}$ is real...
- ... in spite of the fact that when $b \to \infty$, $-\frac{y}{b} \frac{\partial}{\partial x}$ dominates $\frac{H}{b^2}$.

•
$$L_b = \frac{1}{2b^2} \left(-\frac{\partial^2}{\partial y^2} + y^2 - 1 \right) - \frac{y}{b} \frac{\partial}{\partial x}.$$

- Sp $(L_b) = \frac{\mathbf{N}}{b^2} + \{2k^2\pi^2, k \in \mathbf{Z}\}$ is real...
- ... in spite of the fact that when $b \to \infty$, $-\frac{y}{b}\frac{\partial}{\partial x}$ dominates $\frac{H}{b^2}$.
- In Sp (L_b) , spectrum of $-\Delta^{S^1}/2$ remains rigidly embedded.

•
$$L_b = \frac{1}{2b^2} \left(-\frac{\partial^2}{\partial y^2} + y^2 - 1 \right) - \frac{y}{b} \frac{\partial}{\partial x}.$$

- Sp $(L_b) = \frac{\mathbf{N}}{b^2} + \{2k^2\pi^2, k \in \mathbf{Z}\}$ is real...
- ... in spite of the fact that when $b \to \infty$, $-\frac{y}{b} \frac{\partial}{\partial x}$ dominates $\frac{H}{b^2}$.
- In Sp (L_b) , spectrum of $-\Delta^{S^1}/2$ remains rigidly embedded.
- Origin of rigidity is cohomological.

•
$$L_b = \frac{1}{2b^2} \left(-\frac{\partial^2}{\partial y^2} + y^2 - 1 \right) - \frac{y}{b} \frac{\partial}{\partial x}.$$

- Sp $(L_b) = \frac{\mathbf{N}}{b^2} + \{2k^2\pi^2, k \in \mathbf{Z}\}$ is real...
- ... in spite of the fact that when $b \to \infty$, $-\frac{y}{b} \frac{\partial}{\partial x}$ dominates $\frac{H}{b^2}$.
- In Sp (L_b) , spectrum of $-\Delta^{S^1}/2$ remains rigidly embedded.
- Origin of rigidity is cohomological.

• When
$$b \to 0$$
, only $\operatorname{Sp}\left(-\Delta^{S^1}/2\right)$ survives.

•
$$L_b = \frac{1}{2b^2} \left(-\frac{\partial^2}{\partial y^2} + y^2 - 1 \right) - \frac{y}{b} \frac{\partial}{\partial x}.$$

- Sp $(L_b) = \frac{\mathbf{N}}{b^2} + \{2k^2\pi^2, k \in \mathbf{Z}\}$ is real...
- ... in spite of the fact that when $b \to \infty$, $-\frac{y}{b} \frac{\partial}{\partial x}$ dominates $\frac{H}{b^2}$.
- In Sp (L_b) , spectrum of $-\Delta^{S^1}/2$ remains rigidly embedded.
- Origin of rigidity is cohomological.
- When $b \to 0$, only Sp $\left(-\Delta^{S^1}/2\right)$ survives.
- When $b \to +\infty$, $L_b \simeq \frac{1}{2}y^2 y\frac{\partial}{\partial x}$.

Poisson's formula

• We use supersymmetry to eliminate $\frac{N}{b^2}$ dans Sp (L_b) .

- We use supersymmetry to eliminate $\frac{N}{b^2}$ dans Sp (L_b) .
- $N^{\Lambda^{\cdot}(\mathbf{R})}$ degree counting operator on $\Lambda^{\cdot}(\mathbf{R})$.

- We use supersymmetry to eliminate $\frac{N}{b^2}$ dans Sp (L_b) .
- $N^{\Lambda^{\cdot}(\mathbf{R})}$ degree counting operator on $\Lambda^{\cdot}(\mathbf{R})$.

•
$$\mathcal{L}_b = L_b + \frac{N^{\Lambda'(\mathbf{R})}}{b^2}$$
 has same spectrum as L_b .

- We use supersymmetry to eliminate $\frac{N}{b^2}$ dans Sp (L_b) .
- $N^{\Lambda^{\cdot}(\mathbf{R})}$ degree counting operator on $\Lambda^{\cdot}(\mathbf{R})$.
- $\mathcal{L}_b = L_b + \frac{N^{\Lambda'(\mathbf{R})}}{b^2}$ has same spectrum as L_b .
- Remember $\mathcal{L}_b!$

- We use supersymmetry to eliminate $\frac{N}{b^2}$ dans Sp (L_b) .
- $N^{\Lambda^{\cdot}(\mathbf{R})}$ degree counting operator on $\Lambda^{\cdot}(\mathbf{R})$.
- $\mathcal{L}_b = L_b + \frac{N^{\Lambda'(\mathbf{R})}}{b^2}$ has same spectrum as L_b .
- Remember $\mathcal{L}_b!$
- Tr $\left[\exp\left(t\partial^2/\partial x^2/2\right)\right]$ = Tr_s $\left[\exp\left(-t\mathcal{L}_b\right)\right]$.

- We use supersymmetry to eliminate $\frac{N}{b^2}$ dans Sp (L_b) .
- $N^{\Lambda^{\cdot}(\mathbf{R})}$ degree counting operator on $\Lambda^{\cdot}(\mathbf{R})$.
- $\mathcal{L}_b = L_b + \frac{N^{\Lambda'(\mathbf{R})}}{b^2}$ has same spectrum as L_b .
- Remember $\mathcal{L}_b!$
- Tr $\left[\exp\left(t\partial^2/\partial x^2/2\right)\right]$ = Tr_s $\left[\exp\left(-t\mathcal{L}_b\right)\right]$.
- By making $b \to +\infty$, we get Poisson's formula par interpolation.

A compact manifold

• X compact Riemannian manifold.

- X compact Riemannian manifold.
- Δ^X Laplacian on X.

- X compact Riemannian manifold.
- Δ^X Laplacian on X.
- $\exp(t\Delta^X/2)$ heat operator on $C^{\infty}(X, \mathbf{R})$.

- X compact Riemannian manifold.
- Δ^X Laplacian on X.
- $\exp(t\Delta^X/2)$ heat operator on $C^{\infty}(X, \mathbf{R})$.
- $\exp(t\Delta^X/2)$ can be considered as an element g of a semigroup acting on $C^{\infty}(X, \mathbf{R})$.

Trace and cohomology

• One will imagine that $C^{\infty}(X, \mathbf{R})$ is the cohomology of an acyclic complex (R^{\cdot}, d) ...

- One will imagine that $C^{\infty}(X, \mathbf{R})$ is the cohomology of an acyclic complex (R^{\cdot}, d) ...
- ... so that $H^{0}(R) = C^{\infty}(X, \mathbf{R})$, and $H^{i}(R) = 0, i > 0$.

- One will imagine that $C^{\infty}(X, \mathbf{R})$ is the cohomology of an acyclic complex (R^{\cdot}, d) ...
- ... so that $H^{0}(R) = C^{\infty}(X, \mathbf{R})$, and $H^{i}(R) = 0, i > 0$.
- $\operatorname{Tr}^{C^{\infty}(X,\mathbf{R})}\left[\exp\left(t\Delta^X/2\right)\right] = \operatorname{trace} \operatorname{Tr}\left[g\right]$ of a group element g acting on cohomology of this complex.

- One will imagine that $C^{\infty}(X, \mathbf{R})$ is the cohomology of an acyclic complex (R^{\cdot}, d) ...
- ... so that $H^{0}(R) = C^{\infty}(X, \mathbf{R})$, and $H^{i}(R) = 0, i > 0$.
- $\operatorname{Tr}^{C^{\infty}(X,\mathbf{R})}\left[\exp\left(t\Delta^X/2\right)\right] = \operatorname{trace} \operatorname{Tr}\left[g\right]$ of a group element g acting on cohomology of this complex.
- Beware: This cohomology is now infinite dimensional.

Two questions

Two questions

• Can one resolve $C^{\infty}(X, \mathbf{R})$ by an acyclic complex R on which $g = \exp(t\Delta^X/2)$ acts?

Two questions

- Can one resolve $C^{\infty}(X, \mathbf{R})$ by an acyclic complex R on which $g = \exp(t\Delta^X/2)$ acts?
- 2 Is there a Dirac operator D_R acting on R, and commuting with $g = \exp(t\Delta^X/2)$ such that

Two questions

- Can one resolve $C^{\infty}(X, \mathbf{R})$ by an acyclic complex R on which $g = \exp(t\Delta^X/2)$ acts?
- Is there a Dirac operator D_R acting on R, and commuting with $g = \exp(t\Delta^X/2)$ such that

$$\operatorname{Tr}^{C^{\infty}(X,\mathbf{R})}[g] = \operatorname{Tr}_{\mathrm{s}}^{R}\left[g\exp\left(-D_{R}^{2}/2b^{2}\right)\right]$$

Two questions

- Can one resolve $C^{\infty}(X, \mathbf{R})$ by an acyclic complex R on which $g = \exp(t\Delta^X/2)$ acts?
- Is there a Dirac operator D_R acting on R, and commuting with $g = \exp(t\Delta^X/2)$ such that

$$\operatorname{Tr}^{C^{\infty}(X,\mathbf{R})}[g] = \operatorname{Tr}_{\mathrm{s}}^{R}\left[g\exp\left(-D_{R}^{2}/2b^{2}\right)\right]$$

• Analogue of formula of McKean-Singer $\chi(g) = \text{Tr}_{s} [g \exp(-D_{R}^{2}/2b^{2})]...$

Two questions

- Can one resolve $C^{\infty}(X, \mathbf{R})$ by an acyclic complex R on which $g = \exp(t\Delta^X/2)$ acts?
- 2 Is there a Dirac operator D_R acting on R, and commuting with $g = \exp(t\Delta^X/2)$ such that

$$\operatorname{Tr}^{C^{\infty}(X,\mathbf{R})}[g] = \operatorname{Tr}_{\mathrm{s}}^{R}\left[g\exp\left(-D_{R}^{2}/2b^{2}\right)\right].$$

- Analogue of formula of McKean-Singer $\chi(g) = \text{Tr}_{s} [g \exp(-D_{R}^{2}/2b^{2})]...$
- ... used in proof of Lefschetz fixed point formulas of Atiyah-Bott.
The answer is yes!

• E real vector bundle on X, \mathcal{E} total space of E.

- E real vector bundle on X, \mathcal{E} total space of E.
- Embed X as zero section of \mathcal{E} .

- E real vector bundle on X, \mathcal{E} total space of E.
- Embed X as zero section of \mathcal{E} .
- $R = (\Omega^{\cdot}(E), d^{E})$ de Rham complex along the fibres E.

- E real vector bundle on X, \mathcal{E} total space of E.
- Embed X as zero section of \mathcal{E} .
- $R = (\Omega^{\cdot}(E), d^{E})$ de Rham complex along the fibres E.
- Its cohomology is just $C^{\infty}(X, \mathbf{R})$...

- E real vector bundle on X, \mathcal{E} total space of E.
- Embed X as zero section of \mathcal{E} .
- $R = (\Omega^{\cdot}(E), d^{E})$ de Rham complex along the fibres E.
- Its cohomology is just $C^{\infty}(X, \mathbf{R})...$
- ... so that R resolves $C^{\infty}(X, \mathbf{R})$.

The answer is no!

The answer is no!

• In general $g = \exp(t\Delta^X/2)$ does not act on R...

The answer is no!

- In general $g = \exp(t\Delta^X/2)$ does not act on R...
- ② ... and there is no Dirac operator D_R commuting with g.

The case of locally symmetric spaces

• X locally symmetric.

- X locally symmetric.
- Casimir operator $C^{\mathfrak{g}}$ is in the centre of $U(\mathfrak{g})$.

- X locally symmetric.
- Casimir operator $C^{\mathfrak{g}}$ is in the centre of $U(\mathfrak{g})$.
- $C^{\mathfrak{g}}$ acts on $C^{\infty}(X, \mathbf{R})$ like $-\Delta^X$.

- X locally symmetric.
- Casimir operator $C^{\mathfrak{g}}$ is in the centre of $U(\mathfrak{g})$.
- $C^{\mathfrak{g}}$ acts on $C^{\infty}(X, \mathbf{R})$ like $-\Delta^X$.
- There is some hope.

- X locally symmetric.
- Casimir operator $C^{\mathfrak{g}}$ is in the centre of $U(\mathfrak{g})$.
- $C^{\mathfrak{g}}$ acts on $C^{\infty}(X, \mathbf{R})$ like $-\Delta^X$.
- There is some hope.
- The problem is to construct the Dirac operator D_R .

The case of S^1

The case of S^1

The case of S^1

•
$$\mathfrak{D}_b = -d_x + d_x^* + \frac{1}{b} \left(d_y + y \wedge + d_y^* + i_y \right).$$

The case of S^1

- Our operators will act on $C^{\infty}(S^1 \times \mathbf{R}, \Lambda^{\cdot}(\mathbf{R}))$.
- $\mathfrak{D}_b = -d_x + d_x^* + \frac{1}{b} \left(d_y + y \wedge + d_y^* + i_y \right).$
- $d_y + y \wedge = e^{-y^2/2} de^{y^2/2}$ Witten twist of d_y .

The case of S^1

•
$$\mathfrak{D}_b = -d_x + d_x^* + \frac{1}{b} \left(d_y + y \wedge + d_y^* + i_y \right).$$

- $d_y + y \wedge = e^{-y^2/2} de^{y^2/2}$ Witten twist of d_y .
- Complex $(C^{\infty}(S^1 \times \mathbf{R}, \Lambda^{\cdot}(\mathbf{R})), d + y \wedge)$ is a resolution of $C^{\infty}(S^1, \mathbf{R})$.

The case of S^1

•
$$\mathfrak{D}_b = -d_x + d_x^* + \frac{1}{b} \left(d_y + y \wedge + d_y^* + i_y \right).$$

- $d_y + y \wedge = e^{-y^2/2} de^{y^2/2}$ Witten twist of d_y .
- Complex $(C^{\infty}(S^1 \times \mathbf{R}, \Lambda^{\cdot}(\mathbf{R})), d + y \wedge)$ is a resolution of $C^{\infty}(S^1, \mathbf{R})$.

•
$$\mathcal{L}_b = -\frac{1}{2} \frac{\partial^2}{\partial x^2} + \frac{1}{2} \mathfrak{D}_b^2$$

The case of S^1

•
$$\mathfrak{D}_b = -d_x + d_x^* + \frac{1}{b} \left(d_y + y \wedge + d_y^* + i_y \right).$$

- $d_y + y \wedge = e^{-y^2/2} de^{y^2/2}$ Witten twist of d_y .
- Complex $(C^{\infty}(S^1 \times \mathbf{R}, \Lambda^{\cdot}(\mathbf{R})), d + y \wedge)$ is a resolution of $C^{\infty}(S^1, \mathbf{R})$.

•
$$\mathcal{L}_b = -\frac{1}{2} \frac{\partial^2}{\partial x^2} + \frac{1}{2} \mathfrak{D}_b^2.$$

• $\mathcal{L}_b = \frac{1}{2b^2} \left(-\frac{\partial^2}{\partial y^2} + y^2 - 1 \right) + \frac{N^{\Lambda^{\cdot}(\mathbf{R})}}{b^2} - \frac{1}{b} y \frac{\partial}{\partial x}$ already met!

The case of S^1

• Our operators will act on $C^{\infty}(S^1 \times \mathbf{R}, \Lambda^{\cdot}(\mathbf{R}))$.

•
$$\mathfrak{D}_b = -d_x + d_x^* + \frac{1}{b} \left(d_y + y \wedge + d_y^* + i_y \right).$$

- $d_y + y \wedge = e^{-y^2/2} de^{y^2/2}$ Witten twist of d_y .
- Complex $(C^{\infty}(S^1 \times \mathbf{R}, \Lambda^{\cdot}(\mathbf{R})), d + y \wedge)$ is a resolution of $C^{\infty}(S^1, \mathbf{R})$.

•
$$\mathcal{L}_b = -\frac{1}{2} \frac{\partial^2}{\partial x^2} + \frac{1}{2} \mathfrak{D}_b^2.$$

• $\mathcal{L}_b = -\frac{1}{2} \left(-\frac{\partial^2}{\partial x^2} + y^2 - 1 \right) + \frac{N^{\Lambda^{\prime}(\mathbf{R})}}{2} - \frac{1}{2} y \frac{\partial}{\partial x^2}$ already

• $\mathcal{L}_b = \frac{1}{2b^2} \left(-\frac{\omega}{\partial y^2} + y^2 - 1 \right) + \frac{w + \omega}{b^2} - \frac{1}{b} y \frac{\partial}{\partial x}$ already met! • $\operatorname{Tr} \left[\exp \left(t \Delta^{S^1} / 2 \right) \right] = \operatorname{Tr}_s \left[\exp \left(-t \mathcal{L}_b \right) \right].$

The case of S^1

•
$$\mathfrak{D}_b = -d_x + d_x^* + \frac{1}{b} \left(d_y + y \wedge + d_y^* + i_y \right).$$

- $d_y + y \wedge = e^{-y^2/2} de^{y^2/2}$ Witten twist of d_y .
- Complex $(C^{\infty}(S^1 \times \mathbf{R}, \Lambda^{\cdot}(\mathbf{R})), d + y \wedge)$ is a resolution of $C^{\infty}(S^1, \mathbf{R})$.

•
$$\mathcal{L}_b = -\frac{1}{2}\frac{\partial^2}{\partial x^2} + \frac{1}{2}\mathfrak{D}_b^2.$$

• $\mathcal{L}_b = \frac{1}{2b^2}\left(-\frac{\partial^2}{\partial y^2} + y^2 - 1\right) + \frac{N^{\Lambda'(\mathbf{R})}}{b^2} - \frac{1}{b}y\frac{\partial}{\partial x}$ already met

• Tr
$$\left[\exp\left(t\Delta^{S^1}/2\right)\right]$$
 = Tr_s $\left[\exp\left(-t\mathcal{L}_b\right)\right]$.
• Tr $\left[\exp\left(t\Delta^{S^1}/2\right)\right]$ = Tr_s $\left[g\exp\left(-t\mathfrak{D}_b^2/2\right)\right]$ with $g = \exp\left(t\frac{\partial^2}{\partial x^2}/2\right)$.

The symmetric space X

The symmetric space X

• G reductive group, K maximal compact, X = G/K symmetric space.

The symmetric space X

• G reductive group, K maximal compact, X = G/K symmetric space.

•
$$\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}$$
 Cartan splitting.

• \mathbf{R}_x replaced by G, \mathbf{R}_y replaced by \mathfrak{g} .

- \mathbf{R}_x replaced by G, \mathbf{R}_y replaced by \mathfrak{g} .
- $-d_x + d_x^*$ replaced by Dirac operator of Kostant \widehat{D}^K .

- \mathbf{R}_x replaced by G, \mathbf{R}_y replaced by \mathfrak{g} .
- $-d_x + d_x^*$ replaced by Dirac operator of Kostant \widehat{D}^K .
- \bullet One should treat differently $\mathfrak p$ and $\mathfrak k.$

- \mathbf{R}_x replaced by G, \mathbf{R}_y replaced by \mathfrak{g} .
- $-d_x + d_x^*$ replaced by Dirac operator of Kostant \widehat{D}^K .
- \bullet One should treat differently $\mathfrak p$ and $\mathfrak k.$

•
$$\mathfrak{D}_b = \widehat{D}^K + ic\left(\left[Y^{\mathfrak{p}}, Y^{\mathfrak{k}}\right]\right) + \frac{\sqrt{2}}{b}\left(d^{\mathfrak{p}} + Y^{\mathfrak{p}} \wedge + d^{\mathfrak{p}*} + i_{Y^{\mathfrak{p}}}\right)$$

- \mathbf{R}_x replaced by G, \mathbf{R}_y replaced by \mathfrak{g} .
- $-d_x + d_x^*$ replaced by Dirac operator of Kostant \widehat{D}^K .
- \bullet One should treat differently $\mathfrak p$ and $\mathfrak k.$

•
$$\mathfrak{D}_{b} = \widehat{D}^{K} + ic\left(\left[Y^{\mathfrak{p}}, Y^{\mathfrak{k}}\right]\right) + \frac{\sqrt{2}}{b}\left(d^{\mathfrak{p}} + Y^{\mathfrak{p}} \wedge + d^{\mathfrak{p}*} + i_{Y^{\mathfrak{p}}}\right) + \frac{\sqrt{-2}}{b}\left(-d^{\mathfrak{k}} - Y^{\mathfrak{k}} \wedge + d^{\mathfrak{k}*} + i_{Y^{\mathfrak{k}}}\right).$$

Resolutions

- \mathbf{R}_x replaced by G, \mathbf{R}_y replaced by \mathfrak{g} .
- $-d_x + d_x^*$ replaced by Dirac operator of Kostant \widehat{D}^K .
- \bullet One should treat differently $\mathfrak p$ and $\mathfrak k.$

•
$$\mathfrak{D}_{b} = \widehat{D}^{K} + ic\left(\left[Y^{\mathfrak{p}}, Y^{\mathfrak{k}}\right]\right) + \frac{\sqrt{2}}{b}\left(d^{\mathfrak{p}} + Y^{\mathfrak{p}} \wedge + d^{\mathfrak{p}*} + i_{Y^{\mathfrak{p}}}\right) + \frac{\sqrt{-2}}{b}\left(-d^{\mathfrak{k}} - Y^{\mathfrak{k}} \wedge + d^{\mathfrak{k}*} + i_{Y^{\mathfrak{k}}}\right).$$

• \widehat{D}^K Dirac operator of Kostant.

The Dirac operator of Kostant

The Dirac operator of Kostant

• $U(\mathfrak{g})$ enveloping algebra.
- $U(\mathfrak{g})$ enveloping algebra.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g}, -B)$.

- $U(\mathfrak{g})$ enveloping algebra.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g}, -B)$.
- $\Lambda^{\cdot}(\mathfrak{g}^*) \ \widehat{c}(\mathfrak{g})$ -module.

- $U(\mathfrak{g})$ enveloping algebra.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g}, -B)$.
- $\Lambda^{\cdot}(\mathfrak{g}^*) \ \widehat{c}(\mathfrak{g})$ -module.
- $\kappa^{\mathfrak{g}} \in \Lambda^{3}\left(\mathfrak{g}^{*}\right)$ with $\kappa^{\mathfrak{g}}\left(a,b,c\right) = B\left(\left[a,b\right],c\right)$.

- $U(\mathfrak{g})$ enveloping algebra.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g}, -B)$.
- $\Lambda^{\cdot}(\mathfrak{g}^*) \ \widehat{c}(\mathfrak{g})$ -module.
- $\kappa^{\mathfrak{g}} \in \Lambda^{3}\left(\mathfrak{g}^{*}\right)$ with $\kappa^{\mathfrak{g}}\left(a,b,c\right) = B\left(\left[a,b\right],c\right)$.
- $\widehat{D}^K \in \widehat{c}(\mathfrak{g}) \otimes \mathrm{U}(\mathfrak{g}).$

- $U(\mathfrak{g})$ enveloping algebra.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g}, -B)$.
- $\Lambda^{\cdot}(\mathfrak{g}^*) \ \widehat{c}(\mathfrak{g})$ -module.
- $\kappa^{\mathfrak{g}} \in \Lambda^{3}\left(\mathfrak{g}^{*}\right)$ with $\kappa^{\mathfrak{g}}\left(a,b,c\right) = B\left(\left[a,b\right],c\right)$.
- $\widehat{D}^K \in \widehat{c}(\mathfrak{g}) \otimes \mathrm{U}(\mathfrak{g}).$
- $\widehat{D}^K = \widehat{c}(e_i^*) e_i + \frac{1}{2}\widehat{c}(-\kappa^{\mathfrak{g}}).$

- $U(\mathfrak{g})$ enveloping algebra.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g}, -B)$.
- $\Lambda^{\cdot}(\mathfrak{g}^*) \ \widehat{c}(\mathfrak{g})$ -module.
- $\kappa^{\mathfrak{g}} \in \Lambda^{3}\left(\mathfrak{g}^{*}\right)$ with $\kappa^{\mathfrak{g}}\left(a,b,c\right) = B\left(\left[a,b\right],c\right)$.
- $\widehat{D}^K \in \widehat{c}(\mathfrak{g}) \otimes \mathrm{U}(\mathfrak{g}).$
- $\widehat{D}^K = \widehat{c}(e_i^*) e_i + \frac{1}{2}\widehat{c}(-\kappa^{\mathfrak{g}}).$

•
$$\widehat{D}^{K,2} = -C^{\mathfrak{g}} + c...$$

- $U(\mathfrak{g})$ enveloping algebra.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g}, -B)$.
- $\Lambda^{\cdot}(\mathfrak{g}^*) \ \widehat{c}(\mathfrak{g})$ -module.
- $\kappa^{\mathfrak{g}} \in \Lambda^{3}\left(\mathfrak{g}^{*}\right)$ with $\kappa^{\mathfrak{g}}\left(a,b,c\right) = B\left(\left[a,b\right],c\right)$.

•
$$\widehat{D}^K \in \widehat{c}(\mathfrak{g}) \otimes \mathrm{U}(\mathfrak{g})$$

•
$$\widehat{D}^K = \widehat{c}(e_i^*) e_i + \frac{1}{2}\widehat{c}(-\kappa^{\mathfrak{g}}).$$

•
$$\widehat{D}^{K,2} = -C^{\mathfrak{g}} + c...$$

• ... analogue of
$$(-d_x + d_x^*)^2 = \frac{\partial^2}{\partial x^2}$$
.

•
$$\mathfrak{D}_b = \widehat{D}^K + + \frac{\sqrt{2}}{b} (d^{\mathfrak{p}} + Y^{\mathfrak{p}} \wedge + d^{\mathfrak{p}*} + i_{Y^{\mathfrak{p}}})$$

•
$$\mathfrak{D}_b = \widehat{D}^K + ic\left(\left[Y^{\mathfrak{p}}, Y^{\mathfrak{k}}\right]\right) + \frac{\sqrt{2}}{b}\left(d^{\mathfrak{p}} + Y^{\mathfrak{p}} \wedge + d^{\mathfrak{p}*} + i_{Y^{\mathfrak{p}}}\right)$$

•
$$\mathfrak{D}_{b} = \widehat{D}^{K} + ic\left(\left[Y^{\mathfrak{p}}, Y^{\mathfrak{k}}\right]\right) + \frac{\sqrt{2}}{b}\left(d^{\mathfrak{p}} + Y^{\mathfrak{p}} \wedge + d^{\mathfrak{p}*} + i_{Y^{\mathfrak{p}}}\right) + \frac{\sqrt{-2}}{b}\left(-d^{\mathfrak{k}} - Y^{\mathfrak{k}} \wedge + d^{\mathfrak{k}*} + i_{Y^{\mathfrak{k}}}\right).$$

•
$$\mathfrak{D}_{b} = \widehat{D}^{K} + ic\left(\left[Y^{\mathfrak{p}}, Y^{\mathfrak{k}}\right]\right) + \frac{\sqrt{2}}{b}\left(d^{\mathfrak{p}} + Y^{\mathfrak{p}} \wedge + d^{\mathfrak{p}*} + i_{Y^{\mathfrak{p}}}\right) + \frac{\sqrt{-2}}{b}\left(-d^{\mathfrak{k}} - Y^{\mathfrak{k}} \wedge + d^{\mathfrak{k}*} + i_{Y^{\mathfrak{k}}}\right).$$

• $\mathcal{L}_{b} = \frac{1}{2}\left(-\widehat{D}^{K,2} + \mathfrak{D}_{b}^{2}\right).$

•
$$\mathfrak{D}_{b} = \widehat{D}^{K} + ic\left(\left[Y^{\mathfrak{p}}, Y^{\mathfrak{k}}\right]\right) + \frac{\sqrt{2}}{b}\left(d^{\mathfrak{p}} + Y^{\mathfrak{p}} \wedge + d^{\mathfrak{p}*} + i_{Y^{\mathfrak{p}}}\right)$$

 $+ \frac{\sqrt{-2}}{b}\left(-d^{\mathfrak{k}} - Y^{\mathfrak{k}} \wedge + d^{\mathfrak{k}*} + i_{Y^{\mathfrak{k}}}\right).$
• $\mathcal{L}_{b} = \frac{1}{2}\left(-\widehat{D}^{K,2} + \mathfrak{D}_{b}^{2}\right).$
• Remember $\mathcal{L}_{b} = -\frac{1}{2}\frac{\partial^{2}}{\partial x^{2}} + \frac{1}{2}\mathfrak{D}_{b}^{2}.$

The descent to X

• Quotient the previous constructions by K, and descend to X.

- Quotient the previous constructions by K, and descend to X.
- X carries the flat bundle TX ⊕ N modelled on g = p ⊕ 𝔅.

- Quotient the previous constructions by K, and descend to X.
- X carries the flat bundle TX ⊕ N modelled on
 g = p ⊕ 𝔅.
- $\widehat{\mathcal{X}}$ total space of $TX \oplus N$.

- Quotient the previous constructions by K, and descend to X.
- X carries the flat bundle TX ⊕ N modelled on
 g = p ⊕ 𝔅.
- $\widehat{\mathcal{X}}$ total space of $TX \oplus N$.
- $\mathfrak{D}_b, \mathcal{L}_b$ descend to $\mathfrak{D}_b^X, \mathcal{L}_b^X$ acting on $C^{\infty}\left(\widehat{\mathcal{X}}, \pi^*\Lambda^{\cdot}(T^*X \oplus N^*)\right).$

An infinite dimensional vector bundle on X

• Our operators act on $C^{\infty}\left(\widehat{\mathcal{X}}, \pi^*\Lambda^{\cdot}\left(T^*X \oplus N^*\right)\right)$.

- Our operators act on $C^{\infty}\left(\widehat{\mathcal{X}}, \pi^*\Lambda^{\cdot}\left(T^*X \oplus N^*\right)\right)$.
- Using Bargmann and Φ_{OK} isomorphism $L_2(TX) \simeq S^{\cdot}(T^*X), L_2(N) \simeq S^{\cdot}(N^*)...$

- Our operators act on $C^{\infty}\left(\widehat{\mathcal{X}}, \pi^*\Lambda^{\cdot}\left(T^*X \oplus N^*\right)\right)$.
- Using Bargmann and Φ_{OK} isomorphism $L_2(TX) \simeq S^{\cdot}(T^*X), L_2(N) \simeq S^{\cdot}(N^*)...$
- ... so that our operators act on $C^{\infty}(X, S^{\cdot}(T^*X \oplus N^*) \otimes \Lambda^{\cdot}(T^*X \oplus N^*)).$

- Our operators act on $C^{\infty}\left(\widehat{\mathcal{X}}, \pi^*\Lambda^{\cdot}\left(T^*X \oplus N^*\right)\right)$.
- Using Bargmann and Φ_{OK} isomorphism $L_2(TX) \simeq S^{\cdot}(T^*X), L_2(N) \simeq S^{\cdot}(N^*)...$
- ... so that our operators act on $C^{\infty}(X, S^{\cdot}(T^*X \oplus N^*) \otimes \Lambda^{\cdot}(T^*X \oplus N^*)).$
- Geometric picture of enlarging the space equivalent to representation picture of taking infinite dimensional vector bundle.

- Our operators act on $C^{\infty}\left(\widehat{\mathcal{X}}, \pi^*\Lambda^{\cdot}\left(T^*X \oplus N^*\right)\right)$.
- Using Bargmann and Φ_{OK} isomorphism $L_2(TX) \simeq S^{\cdot}(T^*X), L_2(N) \simeq S^{\cdot}(N^*)...$
- ... so that our operators act on $C^{\infty}(X, S^{\cdot}(T^*X \oplus N^*) \otimes \Lambda^{\cdot}(T^*X \oplus N^*)).$
- Geometric picture of enlarging the space equivalent to representation picture of taking infinite dimensional vector bundle.
- $(S^{\cdot}(T^*X \oplus N^*) \otimes \Lambda^{\cdot}(T^*X \oplus N^*), d^{TX \oplus N}) = \text{fibrewise}$ algebraic de Rham complex.

A formula for \mathcal{L}_b^X

 $\begin{array}{c} \mbox{Elliptic and hypoelliptic operators} \\ \mbox{The case of S^1} \\ \mbox{The trace formula as a Lefschetz formula} \\ \mbox{RRG in Bott-Chern cohomology} \\ \mbox{Conclusion} \\ \mbox{References} \end{array}$

A formula for \mathcal{L}_b^X

θ involution of Cartan = ∓ 1 on TX, N.

A formula for \mathcal{L}_b^X

 $\begin{aligned} \theta \text{ involution of Cartan} &= \mp 1 \text{ on } TX, N. \\ \mathfrak{D}_b^X &= \widehat{D}_b^K + ic\left(\left[Y^{TX}, Y^N\right]\right) \dots + \frac{1}{b}\widehat{c}\left(Y^{TX} + iY^N\right) \dots \end{aligned}$

A formula for \mathcal{L}_b^X

$$\begin{aligned} \theta \text{ involution of Cartan} &= \mp 1 \text{ on } TX, N. \\ \mathfrak{D}_b^X &= \widehat{D}_b^K + ic \left(\left[Y^{TX}, Y^N \right] \right) \dots + \frac{1}{b} \widehat{c} \left(Y^{TX} + iY^N \right) \dots \\ \mathcal{L}_b^X &= \frac{1}{2} \left| \left[Y^N, Y^{TX} \right] \right|^2 + \frac{1}{2b^2} \left(-\Delta^{TX \oplus N} + |Y|^2 - n \right) + \frac{N^{\Lambda^{\cdot}(T^*X \oplus N^*)}}{b^2} \end{aligned}$$

A formula for \mathcal{L}_b^X

$$\begin{aligned} \theta \text{ involution of Cartan} &= \mp 1 \text{ on } TX, N. \\ \mathfrak{D}_b^X &= \widehat{D}_b^K + ic \left(\left[Y^{TX}, Y^N \right] \right) \dots + \frac{1}{b} \widehat{c} \left(Y^{TX} + iY^N \right) \dots \\ \mathcal{L}_b^X &= \frac{1}{2} \left| \left[Y^N, Y^{TX} \right] \right|^2 + \frac{1}{2b^2} \left(-\Delta^{TX \oplus N} + |Y|^2 - n \right) + \frac{N^{\Lambda^{\cdot}(T^*X \oplus N^*)}}{b^2} \\ &+ \frac{1}{b} \left(\nabla_{Y^{TX}} + \widehat{c} \left(\text{ad} \left(Y^{TX} \right) \right) - c \left(\text{ad} \left(Y^{TX} \right) + i\theta \text{ad} \left(Y^N \right) \right) \right). \end{aligned}$$

A formula for \mathcal{L}_b^X

$$\begin{aligned} \theta \text{ involution of Cartan} &= \mp 1 \text{ on } TX, N. \\ \mathfrak{D}_b^X &= \widehat{D}_b^K + ic \left(\left[Y^{TX}, Y^N \right] \right) \dots + \frac{1}{b} \widehat{c} \left(Y^{TX} + iY^N \right) \dots \dots \\ \mathcal{L}_b^X &= \frac{1}{2} \left| \left[Y^N, Y^{TX} \right] \right|^2 + \frac{1}{2b^2} \left(-\Delta^{TX \oplus N} + |Y|^2 - n \right) + \frac{N^{\Lambda^{\cdot}(T^*X \oplus N^*)}}{b^2} \\ &+ \frac{1}{b} \left(\nabla_{Y^{TX}} + \widehat{c} \left(\text{ad} \left(Y^{TX} \right) \right) - c \left(\text{ad} \left(Y^{TX} \right) + i\theta \text{ad} \left(Y^N \right) \right) \right). \end{aligned}$$

Making $b \to 0$, \mathcal{L}_b^X deforms $\frac{1}{2} \left(-\Delta^X + c \right)$.

A locally symmetric space

• $Z = \Gamma \setminus X$, with Γ discrete cocompact.

- $Z = \Gamma \setminus X$, with Γ discrete cocompact.
- We have the identity...

- $Z = \Gamma \setminus X$, with Γ discrete cocompact.
- We have the identity...
- $\operatorname{Tr}^{Z}\left[\exp\left(\frac{t}{2}\left(\Delta^{Z}+c\right)\right)\right]=\operatorname{Tr}_{s}\left[\exp\left(-t\mathcal{L}_{b}^{Z}\right)\right].$

- $Z = \Gamma \setminus X$, with Γ discrete cocompact.
- We have the identity...
- $\operatorname{Tr}^{Z}\left[\exp\left(\frac{t}{2}\left(\Delta^{Z}+c\right)\right)\right]=\operatorname{Tr}_{s}\left[\exp\left(-t\mathcal{L}_{b}^{Z}\right)\right].$
- This identity splits as an identity of semisimple orbital integrals.

Semisimple orbital integrals
Semisimple orbital integrals

• $\gamma \in G$ semisimple.

Semisimple orbital integrals

- $\gamma \in G$ semisimple.
- For t > 0, $\operatorname{Tr}^{[\gamma]} \left[\exp \left(-t \left(C^{\mathfrak{g}, X} + c \right) / 2 \right) \right]$ orbital integral on adjoint orbit of γ :

$$\int_{Z(\gamma)\backslash G} \operatorname{Tr}^{E}\left[p_{t}\left(g^{-1}\gamma g\right)\right] dg.$$

Existence of the orbital integral

Existence of the orbital integral

 $|p_t(x, x')| \le C \exp(-C' d^2(x, x')).$

Existence of the orbital integral

 $|p_t(x, x')| \leq C \exp(-C'd^2(x, x')).$ $X(\gamma) \subset X$ symmetric space for $Z(\gamma)$ minimizing $d(x, \gamma x)$. $\begin{array}{c} \mbox{Elliptic and hypoelliptic operators} \\ \mbox{The case of S^1} \\ \mbox{The trace formula as a Lefschetz formula} \\ \mbox{RRG in Bott-Chern cohomology} \\ \mbox{Conclusion} \\ \mbox{References} \end{array}$

Existence of the orbital integral

 $|p_t(x, x')| \leq C \exp(-C'd^2(x, x')).$ $X(\gamma) \subset X$ symmetric space for $Z(\gamma)$ minimizing $d(x, \gamma x)$.

 $d(\mathcal{Y}, \gamma \mathcal{Y}) \geq C(1 + |\mathcal{Y}|)$

•
$$\operatorname{Tr}^{[\gamma]}\left[\exp\left(-\frac{1}{2}\left(C^{\mathfrak{g},X}+c\right)\right)\right] = \operatorname{Tr}_{\mathrm{s}}^{[\gamma]}\left[\exp\left(-t\mathcal{L}_{b}^{X}\right)\right].$$

A fundamental identity

•
$$\operatorname{Tr}^{[\gamma]}\left[\exp\left(-\frac{1}{2}\left(C^{\mathfrak{g},X}+c\right)\right)\right] = \operatorname{Tr}_{\mathrm{s}}^{[\gamma]}\left[\exp\left(-t\mathcal{L}_{b}^{X}\right)\right].$$

• Make $b \to +\infty$.

- $\operatorname{Tr}^{[\gamma]}\left[\exp\left(-\frac{1}{2}\left(C^{\mathfrak{g},X}+c\right)\right)\right] = \operatorname{Tr}_{s}^{[\gamma]}\left[\exp\left(-t\mathcal{L}_{b}^{X}\right)\right].$
- Make $b \to +\infty$.
- Because the geodesic flow becomes dominant...

- $\operatorname{Tr}^{[\gamma]}\left[\exp\left(-\frac{1}{2}\left(C^{\mathfrak{g},X}+c\right)\right)\right] = \operatorname{Tr}_{s}^{[\gamma]}\left[\exp\left(-t\mathcal{L}_{b}^{X}\right)\right].$
- Make $b \to +\infty$.
- Because the geodesic flow becomes dominant...
- ... the orbital integral localizes near $X(\gamma) \subset X$.

- $\operatorname{Tr}^{[\gamma]}\left[\exp\left(-\frac{1}{2}\left(C^{\mathfrak{g},X}+c\right)\right)\right] = \operatorname{Tr}_{s}^{[\gamma]}\left[\exp\left(-t\mathcal{L}_{b}^{X}\right)\right].$
- Make $b \to +\infty$.
- Because the geodesic flow becomes dominant...
- ... the orbital integral localizes near $X(\gamma) \subset X$.
- Analytic difficulties connected with hyperbolicity of geodesic flow.

- $\operatorname{Tr}^{[\gamma]}\left[\exp\left(-\frac{1}{2}\left(C^{\mathfrak{g},X}+c\right)\right)\right] = \operatorname{Tr}_{s}^{[\gamma]}\left[\exp\left(-t\mathcal{L}_{b}^{X}\right)\right].$
- Make $b \to +\infty$.
- Because the geodesic flow becomes dominant...
- ... the orbital integral localizes near $X(\gamma) \subset X$.
- Analytic difficulties connected with hyperbolicity of geodesic flow.
- Analogy with Lefschetz fixed point formulas.

The function $J_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right)$

The function $J_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right)$

•
$$\gamma = e^a k^{-1}$$
, Ad (k) $a = a$.

The function $J_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right)$

•
$$\gamma = e^a k^{-1}$$
, Ad $(k) a = a$.

•
$$\mathfrak{z}(\gamma) = \mathfrak{p}(\gamma) \oplus \mathfrak{k}(\gamma).$$

The function $J_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right)$

•
$$\gamma = e^a k^{-1}$$
, Ad $(k) a = a$.

•
$$\mathfrak{z}(\gamma) = \mathfrak{p}(\gamma) \oplus \mathfrak{k}(\gamma).$$

• $J_{\gamma}(Y_0^{\mathfrak{k}})$ function on $\mathfrak{k}(\gamma) \simeq$ ratio of two Atiyah-Bott for $TX \simeq \mathfrak{p}$ and $N \simeq \mathfrak{k}$.

$$J_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right) = \frac{1}{\left|\det\left(1 - \operatorname{Ad}\left(\gamma\right)\right)\right|_{\mathfrak{z}_{0}^{\perp}}\right|^{1/2}} \frac{\widehat{A}\left(\operatorname{iad}\left(Y_{0}^{\mathfrak{k}}\right)|_{\mathfrak{p}(\gamma)}\right)}{\widehat{A}\left(\operatorname{iad}\left(Y_{0}^{\mathfrak{k}}\right)_{\mathfrak{k}(\gamma)}\right)}$$

$$J_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right) = \frac{1}{\left|\det\left(1 - \operatorname{Ad}\left(\gamma\right)\right)\right|_{\mathfrak{z}_{0}^{\perp}}\right|^{1/2}} \frac{\widehat{A}\left(\operatorname{iad}\left(Y_{0}^{\mathfrak{k}}\right)|_{\mathfrak{p}(\gamma)}\right)}{\widehat{A}\left(\operatorname{iad}\left(Y_{0}^{\mathfrak{k}}\right)_{\mathfrak{k}(\gamma)}\right)}$$
$$\left[\frac{1}{\det\left(1 - \operatorname{Ad}\left(k^{-1}\right)\right)|_{\mathfrak{z}_{0}^{\perp}(\gamma)}}\right]$$

$$J_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right) = \frac{1}{\left|\det\left(1 - \operatorname{Ad}\left(\gamma\right)\right)\right|_{\mathfrak{z}_{0}^{\perp}}\right|^{1/2}} \frac{\widehat{A}\left(\operatorname{iad}\left(Y_{0}^{\mathfrak{k}}\right)|_{\mathfrak{p}(\gamma)}\right)}{\widehat{A}\left(\operatorname{iad}\left(Y_{0}^{\mathfrak{k}}\right)_{\mathfrak{k}(\gamma)}\right)} \\ \left[\frac{1}{\det\left(1 - \operatorname{Ad}\left(k^{-1}\right)\right)|_{\mathfrak{z}_{0}^{\perp}(\gamma)}}\right]^{1/2} \\ \frac{\det\left(1 - \exp\left(-\operatorname{iad}\left(Y_{0}^{\mathfrak{k}}\right)\right)\operatorname{Ad}\left(k^{-1}\right)\right)|_{\mathfrak{k}_{0}^{\perp}(\gamma)}}{\det\left(1 - \exp\left(-\operatorname{iad}\left(Y_{0}^{\mathfrak{k}}\right)\right)\operatorname{Ad}\left(k^{-1}\right)\right)|_{\mathfrak{p}_{0}^{\perp}(\gamma)}}\right]^{1/2}.$$

The final formula

The final formula

$$\operatorname{Tr}^{[\gamma]}\left[\exp\left(t\left(\Delta^{X}+c\right)/2\right)\right] = \frac{\exp\left(-\left|a\right|^{2}/2t\right)}{\left(2\pi t\right)^{p/2}}$$
$$\int_{\mathfrak{k}(\gamma)} J_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right) \operatorname{Tr}^{E}\left[\rho^{E}\left(k^{-1}\right)\exp\left(-i\rho^{E}\left(Y_{0}^{\mathfrak{k}}\right)\right)\right]$$
$$\exp\left(-\left|Y_{0}^{\mathfrak{k}}\right|^{2}/2t\right) \frac{dY_{0}^{\mathfrak{k}}}{\left(2\pi t\right)^{q/2}}.$$

The final formula

$$\operatorname{Tr}^{[\gamma]}\left[\exp\left(t\left(\Delta^{X}+c\right)/2\right)\right] = \frac{\exp\left(-\left|a\right|^{2}/2t\right)}{\left(2\pi t\right)^{p/2}}$$
$$\int_{\mathfrak{k}(\gamma)} J_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right) \operatorname{Tr}^{E}\left[\rho^{E}\left(k^{-1}\right)\exp\left(-i\rho^{E}\left(Y_{0}^{\mathfrak{k}}\right)\right)\right]$$
$$\exp\left(-\left|Y_{0}^{\mathfrak{k}}\right|^{2}/2t\right) \frac{dY_{0}^{\mathfrak{k}}}{\left(2\pi t\right)^{q/2}}.$$

Formula \simeq Atiyah-Bott $L(g) = \int_{X_g} \widehat{A}_g(TX) \operatorname{ch}_g(E)$.

The final formula

$$\operatorname{Tr}^{[\gamma]}\left[\exp\left(t\left(\Delta^{X}+c\right)/2\right)\right] = \frac{\exp\left(-\left|a\right|^{2}/2t\right)}{\left(2\pi t\right)^{p/2}}$$
$$\int_{\mathfrak{k}(\gamma)} J_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right) \operatorname{Tr}^{E}\left[\rho^{E}\left(k^{-1}\right)\exp\left(-i\rho^{E}\left(Y_{0}^{\mathfrak{k}}\right)\right)\right]$$
$$\exp\left(-\left|Y_{0}^{\mathfrak{k}}\right|^{2}/2t\right) \frac{dY_{0}^{\mathfrak{k}}}{\left(2\pi t\right)^{q/2}}.$$

Formula \simeq Atiyah-Bott $L(g) = \int_{X_g} \widehat{A}_g(TX) \operatorname{ch}_g(E)$. If $G = \operatorname{SL}_2(\mathbf{R})$, one recovers Selberg's original trace formula.

The final formula

$$\operatorname{Tr}^{[\gamma]}\left[\exp\left(t\left(\Delta^{X}+c\right)/2\right)\right] = \frac{\exp\left(-\left|a\right|^{2}/2t\right)}{\left(2\pi t\right)^{p/2}}$$
$$\int_{\mathfrak{k}(\gamma)} J_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right) \operatorname{Tr}^{E}\left[\rho^{E}\left(k^{-1}\right)\exp\left(-i\rho^{E}\left(Y_{0}^{\mathfrak{k}}\right)\right)\right]$$
$$\exp\left(-\left|Y_{0}^{\mathfrak{k}}\right|^{2}/2t\right) \frac{dY_{0}^{\mathfrak{k}}}{\left(2\pi t\right)^{q/2}}.$$

Formula \simeq Atiyah-Bott $L(g) = \int_{X_g} \widehat{A}_g(TX) \operatorname{ch}_g(E)$. If $G = \operatorname{SL}_2(\mathbf{R})$, one recovers Selberg's original trace formula. The formula extends to wave kernel.

Bott-Chern cohomology

• S complex manifold of dimension n.

- S complex manifold of dimension n.
- Bott-Chern cohomology $H_{\rm BC}^{(p,q)}\left(S,\mathbf{C}\right) = \frac{\ker d^S \cap \Omega^{(p,q)}(S,\mathbf{C})}{\overline{\partial}^S \partial^S \Omega^{(p-1,q-1)}(S,\mathbf{C})}.$

- S complex manifold of dimension n.
- Bott-Chern cohomology $H_{\rm BC}^{(p,q)}\left(S,\mathbf{C}\right) = \frac{\ker d^S \cap \Omega^{(p,q)}(S,\mathbf{C})}{\overline{\partial}^S \partial^S \Omega^{(p-1,q-1)}(S,\mathbf{C})}.$
- In general $H_{\mathrm{BC}}^{\cdot}(X, \mathbf{C})$ strictly finer than $H_{\mathrm{DR}}^{\cdot}(X, \mathbf{C})$.

- S complex manifold of dimension n.
- Bott-Chern cohomology $H_{\rm BC}^{(p,q)}\left(S,\mathbf{C}\right) = \frac{\ker d^S \cap \Omega^{(p,q)}(S,\mathbf{C})}{\overline{\partial}^S \partial^S \Omega^{(p-1,q-1)}(S,\mathbf{C})}.$
- In general H[·]_{BC} (X, C) strictly finer than H[·]_{DR} (X, C).
 H⁽⁼⁾_{BC} (S, R) = ⊕_{0≤p≤n} H^(p,p)_{BC} (S, R).

- S complex manifold of dimension n.
- Bott-Chern cohomology $H_{\rm BC}^{(p,q)}\left(S,\mathbf{C}\right) = \frac{\ker d^{S} \cap \Omega^{(p,q)}(S,\mathbf{C})}{\overline{\partial}^{S} \partial^{S} \Omega^{(p-1,q-1)}(S,\mathbf{C})}.$
- In general $H_{BC}^{\cdot}(X, \mathbb{C})$ strictly finer than $H_{DR}^{\cdot}(X, \mathbb{C})$.
- $H_{\mathrm{BC}}^{(=)}\left(S,\mathbf{R}\right) = \bigoplus_{0 \le p \le n} H_{\mathrm{BC}}^{(p,p)}\left(S,\mathbf{R}\right).$
- Holomorphic vector bundles have characteristic classes in $H_{BC}^{(=)}(S, \mathbf{R})$.

A theorem of RRG

A theorem of RRG

• $p: M \to S$ proper submersion of complex manifolds, with fibre $X_s = p^{-1}(s)$.

A theorem of RRG

- $p: M \to S$ proper submersion of complex manifolds, with fibre $X_s = p^{-1}(s)$.
- F holomorphic vector bundle on M.

A theorem of RRG

- $p: M \to S$ proper submersion of complex manifolds, with fibre $X_s = p^{-1}(s)$.
- F holomorphic vector bundle on M.

Theorem
A theorem of RRG

- $p: M \to S$ proper submersion of complex manifolds, with fibre $X_s = p^{-1}(s)$.
- F holomorphic vector bundle on M.

Theorem

If $R^{\cdot}p_{*}F$ is locally free, then

A theorem of RRG

- $p: M \to S$ proper submersion of complex manifolds, with fibre $X_s = p^{-1}(s)$.
- F holomorphic vector bundle on M.

Theorem

If $R^{\cdot}p_{*}F$ is locally free, then

$$\operatorname{ch}_{\mathrm{BC}}\left(R^{\cdot}p_{*}F\right) = p_{*}\left[\operatorname{Td}_{\mathrm{BC}}\left(TX\right)\operatorname{ch}_{\mathrm{BC}}\left(F\right)\right] \text{ in } H_{\mathrm{BC}}^{(=)}\left(S,\mathbf{R}\right).$$

A theorem of RRG

- $p: M \to S$ proper submersion of complex manifolds, with fibre $X_s = p^{-1}(s)$.
- F holomorphic vector bundle on M.

Theorem

If $R^{\cdot}p_{*}F$ is locally free, then

$$\operatorname{ch}_{\mathrm{BC}}(R^{\cdot}p_{*}F) = p_{*}\left[\operatorname{Td}_{\mathrm{BC}}(TX)\operatorname{ch}_{\mathrm{BC}}(F)\right] \operatorname{in} H_{\mathrm{BC}}^{(=)}(S,\mathbf{R}).$$

Also $c_{1,BC} (\det R^{\cdot} p_* F) = p_* [Td_{BC} (TX) ch_{BC} (F)]^{(1,1)}.$

A theorem of RRG

- $p: M \to S$ proper submersion of complex manifolds, with fibre $X_s = p^{-1}(s)$.
- F holomorphic vector bundle on M.

Theorem

If $R^{\cdot}p_{*}F$ is locally free, then

$$\operatorname{ch}_{\mathrm{BC}}(R^{\cdot}p_{*}F) = p_{*}\left[\operatorname{Td}_{\mathrm{BC}}(TX)\operatorname{ch}_{\mathrm{BC}}(F)\right] \operatorname{in} H_{\mathrm{BC}}^{(=)}(S,\mathbf{R}).$$

Also $c_{1,BC} (\det R^{\cdot} p_* F) = p_* [Td_{BC} (TX) ch_{BC} (F)]^{(1,1)}.$

Remark

A theorem of RRG

- $p: M \to S$ proper submersion of complex manifolds, with fibre $X_s = p^{-1}(s)$.
- F holomorphic vector bundle on M.

Theorem

If $R^{\cdot}p_{*}F$ is locally free, then

$$\operatorname{ch}_{\mathrm{BC}}(R^{\cdot}p_{*}F) = p_{*}\left[\operatorname{Td}_{\mathrm{BC}}(TX)\operatorname{ch}_{\mathrm{BC}}(F)\right] \operatorname{in} H_{\mathrm{BC}}^{(=)}(S,\mathbf{R}).$$

Also $c_{1,BC} (\det R^{\cdot} p_* F) = p_* [Td_{BC} (TX) ch_{BC} (F)]^{(1,1)}.$

Remark

This result is known if M is Kähler.

• In general, elliptic methods used in the context of Аракелов geometry do not work (no local index theory).

- In general, elliptic methods used in the context of Аракелов geometry do not work (no local index theory).
- I will explain part of the construction when S is a point.

- In general, elliptic methods used in the context of Аракелов geometry do not work (no local index theory).
- I will explain part of the construction when S is a point.
- Let $\pi : \mathcal{X} \to X$ be total space of TX, with fibre \widehat{TX} , $\widehat{y} \in \widehat{TX}$ tautological section, $y \in TX$ corresponding section.

- In general, elliptic methods used in the context of Аракелов geometry do not work (no local index theory).
- I will explain part of the construction when S is a point.
- Let $\pi : \mathcal{X} \to X$ be total space of TX, with fibre \widehat{TX} , $\widehat{y} \in \widehat{TX}$ tautological section, $y \in TX$ corresponding section.

•
$$A_b'' = \overline{\partial}^{\mathcal{X}} + i_y/b^2$$
 acts on $\Omega^{(0,\cdot)}(\mathcal{X}, \pi^*(\Lambda^{\cdot}(T^*X) \otimes F)).$

Exotic Hodge theory

• On $\Omega^{(0,\cdot)}(\mathcal{X},\pi^*(\Lambda^{\cdot}(T^*X)\otimes F))...$

- On $\Omega^{(0,\cdot)}(\mathcal{X},\pi^*(\Lambda^{\cdot}(T^*X)\otimes F))...$
- ... introduce duality which is essentially Serre duality on X, and Hermitian duality fibrewise.

- On $\Omega^{(0,\cdot)}(\mathcal{X},\pi^*(\Lambda^{\cdot}(T^*X)\otimes F))...$
- ... introduce duality which is essentially Serre duality on X, and Hermitian duality fibrewise.

•
$$r(x, \widehat{y}) = (x, -\widehat{y}).$$

- On $\Omega^{(0,\cdot)}(\mathcal{X},\pi^*(\Lambda^{\cdot}(T^*X)\otimes F))...$
- ... introduce duality which is essentially Serre duality on X, and Hermitian duality fibrewise.

•
$$r(x,\widehat{y}) = (x,-\widehat{y}).$$

• $\epsilon(s\widehat{\otimes}t,s'\widehat{\otimes}t') = \frac{i^n}{(2\pi)^{2n}}(-1)^{p(p+1)/2} \int_{\mathcal{X}} \langle \underline{r}^*t,t' \rangle_{g^{\Lambda}(\widehat{T^*X})\otimes F} \underline{r}^*s \wedge \overline{e^{-i\omega^X}s'} dv_{\widehat{TX}}.$

- On $\Omega^{(0,\cdot)}(\mathcal{X},\pi^*(\Lambda^{\cdot}(T^*X)\otimes F))...$
- ... introduce duality which is essentially Serre duality on X, and Hermitian duality fibrewise.
- $r(x,\widehat{y}) = (x,-\widehat{y}).$ • $\epsilon(s\widehat{\otimes}t,s'\widehat{\otimes}t') = \frac{i^n}{(2\pi)^{2n}}(-1)^{p(p+1)/2} \int_{\mathcal{X}} \langle \underline{r}^*t,t' \rangle_{g^{\Lambda}(\widehat{\overline{T^*X}})\otimes F} \underline{\underline{r}}^*s \wedge \overline{e^{-i\omega^X}s'} dv_{\widehat{TX}}.$
- 'Laplacian' associated with A_b'', ϵ hypoelliptic and looks like

$$\frac{1}{2b^2} \left(-\Delta_{g^{\widehat{TX}}}^V + |Y|_{g^{TX}}^2 \right) + \frac{1}{b} \nabla_Y + \cdot$$

Exotic Hodge theory

- On $\Omega^{(0,\cdot)}(\mathcal{X},\pi^*(\Lambda^{\cdot}(T^*X)\otimes F))...$
- ... introduce duality which is essentially Serre duality on X, and Hermitian duality fibrewise.
- $r(x,\widehat{y}) = (x,-\widehat{y}).$ • $\epsilon(s\widehat{\otimes}t,s'\widehat{\otimes}t') = \frac{i^n}{(2\pi)^{2n}}(-1)^{p(p+1)/2} \int_{\mathcal{X}} \langle \underline{r}^*t,t' \rangle_{g^{\Lambda}(\widehat{\overline{r^*x}})\otimes F} \underline{r}^*s \wedge \overline{e^{-i\omega^X}s'} dv_{\widehat{TX}}.$
- 'Laplacian' associated with A_b'', ϵ hypoelliptic and looks like

$$\frac{1}{2b^2} \left(-\Delta_{g^{\widehat{TX}}}^V + |Y|_{g^{TX}}^2 \right) + \frac{1}{b} \nabla_Y + \cdot$$

• If pure Serre duality was used, the 'Laplacian' would be 0!

This still fails!

• Proving RRG consists in finding an explicit limit as $t \to 0$ of certain supertraces.

- Proving RRG consists in finding an explicit limit as $t \to 0$ of certain supertraces.
- This fails for elliptic Hodge theory.

- Proving RRG consists in finding an explicit limit as $t \to 0$ of certain supertraces.
- This fails for elliptic Hodge theory.
- This still fails for the above hypoelliptic Hodge theory.

- Proving RRG consists in finding an explicit limit as $t \to 0$ of certain supertraces.
- This fails for elliptic Hodge theory.
- This still fails for the above hypoelliptic Hodge theory.
- This works for a Hodge theory, in which the Kähler form ω^X is replaced by $|Y|_{q^{TX}}^2 \omega^X$.

RRG and Fourier transform

• Riemann-Roch $\chi(F) = \int_X \operatorname{Td}(TX) \operatorname{ch}(F)...$

- Riemann-Roch $\chi(F) = \int_X \operatorname{Td}(TX) \operatorname{ch}(F)...$
- ... has some Fourier transform quality...

- Riemann-Roch $\chi(F) = \int_X \operatorname{Td}(TX) \operatorname{ch}(F)...$
- ... has some Fourier transform quality...
- ... since it transforms a global object into a local one.

- Riemann-Roch $\chi(F) = \int_X \operatorname{Td}(TX) \operatorname{ch}(F)...$
- ... has some Fourier transform quality...
- ... since it transforms a global object into a local one.
- The theory of the hypoelliptic Laplacian is an attempt to invert the Fourier transform.

Fourier transform and the geodesic flow

• The principal symbol of the generator of the geodesic flow $\nabla_Y \simeq \sum_{i=1}^n Y^i \frac{\partial}{\partial x^i} \dots$

- The principal symbol of the generator of the geodesic flow $\nabla_Y \simeq \sum_{i=1}^n Y^i \frac{\partial}{\partial x^i} \dots$
- ... is given by $i \langle Y, \xi \rangle$...

- The principal symbol of the generator of the geodesic flow $\nabla_Y \simeq \sum_{i=1}^n Y^i \frac{\partial}{\partial x^i} \dots$
- ... is given by $i \langle Y, \xi \rangle$...
- ... also appears in Fourier integral $\int_{\mathbf{R}^n} e^{-i\langle Y,\xi \rangle} \dots dY$.

- The principal symbol of the generator of the geodesic flow $\nabla_Y \simeq \sum_{i=1}^n Y^i \frac{\partial}{\partial x^i} \dots$
- ... is given by $i \langle Y, \xi \rangle$...
- ... also appears in Fourier integral $\int_{\mathbf{R}^n} e^{-i\langle Y,\xi \rangle} \dots dY$.
- Introducing the geodesic flow is a way of forcing Fourier transform in the analysis.

Hodge theory and the harmonic oscillator

Hodge theory and the harmonic oscillator

• $X \subset \mathcal{X}$ zero section of total space of TX.

Hodge theory and the harmonic oscillator

- $X \subset \mathcal{X}$ zero section of total space of TX.
- $C^{\infty}(X, \mathbf{R}) \simeq$ cohomology of fibrewise de Rham...

Hodge theory and the harmonic oscillator

- $X \subset \mathcal{X}$ zero section of total space of TX.
- $C^{\infty}(X, \mathbf{R}) \simeq$ cohomology of fibrewise de Rham...
- \simeq ground state of fibrewise harmonic oscillator (physically counterintuitive).
Elliptic and hypoelliptic operators The case of S¹ The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

Hodge theory and the harmonic oscillator

- $X \subset \mathcal{X}$ zero section of total space of TX.
- $C^{\infty}(X, \mathbf{R}) \simeq$ cohomology of fibrewise de Rham...
- \simeq ground state of fibrewise harmonic oscillator (physically counterintuitive).
- The hypoelliptic Laplacian introduces extra degrees of freedom in fibre direction...

Elliptic and hypoelliptic operators The case of S¹ The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

Hodge theory and the harmonic oscillator

- $X \subset \mathcal{X}$ zero section of total space of TX.
- $C^{\infty}(X, \mathbf{R}) \simeq$ cohomology of fibrewise de Rham...
- \simeq ground state of fibrewise harmonic oscillator (physically counterintuitive).
- The hypoelliptic Laplacian introduces extra degrees of freedom in fibre direction...
- ... which exist even in very rigid situations.

Elliptic and hypoelliptic operators The case of S¹ The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion **References**

- J.-M. Bismut, *Hypoelliptic Laplacian and Bott-Chern* cohomology, Preprint (Orsay) (2011).
- _____, Hypoelliptic Laplacian and orbital integrals, Annals of Mathematics Studies, vol. 177, Princeton University Press, Princeton, NJ, 2011. MR 2828080
- Index theory and the hypoelliptic Laplacian, Proceedings of the Conference in honour of Jeff Cheeger (Xianzhe Dai and Xiaochun Rong, eds.), Birkhäuser Boston Inc., 2012, pp. 181–232.