The hypoelliptic Laplacian

Jean-Michel Bismut
Université Paris-Sud, Orsay
For Professor A.H. Паршин
(1) Elliptic and hypoelliptic operators
(2) The case of S^{1}
(3) The trace formula as a Lefschetz formula
(4) RRG in Bott-Chern cohomology
(5) Conclusion

Elliptic and hypoelliptic operators

The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

Elliptic operators

Elliptic operators

- Differential operator P elliptic: principal symbol $\sigma(x, \xi)$ invertible for $\xi \neq 0$.

Elliptic operators

- Differential operator P elliptic: principal symbol $\sigma(x, \xi)$ invertible for $\xi \neq 0$.
- X Riemannian manifold, $-\Delta^{X}$ elliptic, principal symbol $|\xi|^{2}$.

Elliptic operators

- Differential operator P elliptic: principal symbol $\sigma(x, \xi)$ invertible for $\xi \neq 0$.
- X Riemannian manifold, $-\Delta^{X}$ elliptic, principal symbol $|\xi|^{2}$.
- Laplacian on circle $S^{1},-\frac{\partial^{2}}{\partial x^{2}}$, symbol ξ^{2}.

Elliptic operators

- Differential operator P elliptic: principal symbol $\sigma(x, \xi)$ invertible for $\xi \neq 0$.
- X Riemannian manifold, $-\Delta^{X}$ elliptic, principal symbol $|\xi|^{2}$.
- Laplacian on circle $S^{1},-\frac{\partial^{2}}{\partial x^{2}}$, symbol ξ^{2}.
- Ellipticity stable property by small deformation.

The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

Hypoelliptic operators

Hypoelliptic operators

- Hypoellipticity weaker property.

Hypoelliptic operators

- Hypoellipticity weaker property.
- Differential operator P hypoelliptic if $P u C^{\infty}$ on open set \mathcal{O} implies $u C^{\infty}$ on \mathcal{O}.

Hypoelliptic operators

- Hypoellipticity weaker property.
- Differential operator P hypoelliptic if $P u C^{\infty}$ on open set \mathcal{O} implies $u C^{\infty}$ on \mathcal{O}.
- An example is the operator of Колмогоров (1934)

$$
K=-\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}}-y \frac{\partial}{\partial x}
$$

Hypoelliptic operators

- Hypoellipticity weaker property.
- Differential operator P hypoelliptic if $P u C^{\infty}$ on open set \mathcal{O} implies $u C^{\infty}$ on \mathcal{O}.
- An example is the operator of Колмогоров (1934)

$$
K=-\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}}-y \frac{\partial}{\partial x} .
$$

- The operator of Kolmogorov model of hypoelliptic operators studied by Hörmander.

Elliptic and hypoelliptic operators

The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

The main statement

The main statement

X Riemannian, Δ^{X} Laplacian on X.

Elliptic and hypoelliptic operators
The case of S^{1}
The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

The main statement

X Riemannian, Δ^{X} Laplacian on X.
The main statement

Elliptic and hypoelliptic operators
The case of S^{1}
The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology

The main statement

X Riemannian, Δ^{X} Laplacian on X.

The main statement

The elliptic operator $-\Delta^{X} / 2$ on X can be deformed

The main statement

X Riemannian, Δ^{X} Laplacian on X.

The main statement

The elliptic operator $-\Delta^{X} / 2$ on X can be deformed to a family of hypoelliptic operators $\left.\mathcal{L}_{b}\right|_{b>0}$

The main statement

X Riemannian, Δ^{X} Laplacian on X.

The main statement

The elliptic operator $-\Delta^{X} / 2$ on X can be deformed to a family of hypoelliptic operators $\left.\mathcal{L}_{b}\right|_{b>0}$ acting on total space \mathcal{X} of $T X$,

The main statement

X Riemannian, Δ^{X} Laplacian on X.

The main statement

The elliptic operator $-\Delta^{X} / 2$ on X can be deformed to a family of hypoelliptic operators $\left.\mathcal{L}_{b}\right|_{b>0}$ acting on total space \mathcal{X} of $T X$, which interpolates between $-\Delta^{X} / 2$ for $b=0$,

The main statement

X Riemannian, Δ^{X} Laplacian on X.

The main statement

The elliptic operator $-\Delta^{X} / 2$ on X can be deformed to a family of hypoelliptic operators $\left.\mathcal{L}_{b}\right|_{b>0}$ acting on total space \mathcal{X} of $T X$, which interpolates between $-\Delta^{X} / 2$ for $b=0$, and generator Z of geodesic flow for $b=+\infty$.

Elliptic and hypoelliptic operators
The case of S^{1}
The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

Remark

Elliptic and hypoelliptic operators
The case of S^{1}
The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

Remark

(1) The statement does not make any sense...

Remark

(1) The statement does not make any sense...
(2) \ldots since the operators $-\Delta^{X} / 2$ and Z act on different spaces.

Remark

(1) The statement does not make any sense...
(2) \ldots since the operators $-\Delta^{X} / 2$ and Z act on different spaces.
(3) Deformation connects objects of analysis to geometric objects.

Remark

(1) The statement does not make any sense...
(2) . . since the operators $-\Delta^{X} / 2$ and Z act on different spaces.
(3) Deformation connects objects of analysis to geometric objects.
(9) It connects spectral invariants to closed geodesics, like in Selberg's trace formula.

Elliptic and hypoelliptic operators

The trace formula as a Lefschetz formula

 RRG in Bott-Chern cohomology Conclusion References
How does \mathcal{L}_{b} look like?

How does \mathcal{L}_{b} look like?

- \mathcal{X} total space of $T X$.

How does \mathcal{L}_{b} look like?

- \mathcal{X} total space of $T X$.
- $H=\frac{1}{2}\left(-\Delta^{T X}+|Y|^{2}-n\right)$ harmonic oscillator along fibres $T X$.

The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology

How does \mathcal{L}_{b} look like?

- \mathcal{X} total space of $T X$.
- $H=\frac{1}{2}\left(-\Delta^{T X}+|Y|^{2}-n\right)$ harmonic oscillator along fibres $T X$.
- Z generator of geodesic flow on $\mathcal{X}\left(Z \simeq \sum_{i=1}^{n} Y^{i} \frac{\partial}{\partial x^{i}}\right)$.

The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology

How does \mathcal{L}_{b} look like?

- \mathcal{X} total space of $T X$.
- $H=\frac{1}{2}\left(-\Delta^{T X}+|Y|^{2}-n\right)$ harmonic oscillator along fibres $T X$.
- Z generator of geodesic flow on $\mathcal{X}\left(Z \simeq \sum_{i=1}^{n} Y^{i} \frac{\partial}{\partial x^{i}}\right)$.
- $\mathcal{L}_{b}=\frac{H}{b^{2}}-\frac{Z}{b}+\ldots$

How does \mathcal{L}_{b} look like?

- \mathcal{X} total space of $T X$.
- $H=\frac{1}{2}\left(-\Delta^{T X}+|Y|^{2}-n\right)$ harmonic oscillator along fibres $T X$.
- Z generator of geodesic flow on $\mathcal{X}\left(Z \simeq \sum_{i=1}^{n} Y^{i} \frac{\partial}{\partial x^{i}}\right)$.
- $\mathcal{L}_{b}=\frac{H}{b^{2}}-\frac{Z}{b}+\ldots$
- ... contains geometric terms.

How does \mathcal{L}_{b} look like?

- \mathcal{X} total space of $T X$.
- $H=\frac{1}{2}\left(-\Delta^{T X}+|Y|^{2}-n\right)$ harmonic oscillator along fibres $T X$.
- Z generator of geodesic flow on $\mathcal{X}\left(Z \simeq \sum_{i=1}^{n} Y^{i} \frac{\partial}{\partial x^{i}}\right)$.
- $\mathcal{L}_{b}=\frac{H}{b^{2}}-\frac{Z}{b}+\ldots$
- ... contains geometric terms.
- By Hörmander, \mathcal{L}_{b} and $\frac{\partial}{\partial t}+\mathcal{L}_{b}$ hypoelliptic.

How does \mathcal{L}_{b} look like?

- \mathcal{X} total space of $T X$.
- $H=\frac{1}{2}\left(-\Delta^{T X}+|Y|^{2}-n\right)$ harmonic oscillator along fibres $T X$.
- Z generator of geodesic flow on $\mathcal{X}\left(Z \simeq \sum_{i=1}^{n} Y^{i} \frac{\partial}{\partial x^{i}}\right)$.
- $\mathcal{L}_{b}=\frac{H}{b^{2}}-\frac{Z}{b}+\ldots$
- ... contains geometric terms.
- By Hörmander, \mathcal{L}_{b} and $\frac{\partial}{\partial t}+\mathcal{L}_{b}$ hypoelliptic.
- \mathcal{L}_{b} Fokker-Planck operator.

Elliptic and hypoelliptic operators
The case of S^{1}
The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

Our goal

Our goal

Our goal is...

Our goal

Our goal is...
(1) To show that this deformation obtained by deforming underlying analytic and geometric structures.

Our goal

Our goal is...
(1) To show that this deformation obtained by deforming underlying analytic and geometric structures.
(2) In certain cases, the full spectrum is preserved.

Our goal

Our goal is...
(1) To show that this deformation obtained by deforming underlying analytic and geometric structures.
(2) In certain cases, the full spectrum is preserved.

Three examples

Our goal

Our goal is...
(1) To show that this deformation obtained by deforming underlying analytic and geometric structures.
(2) In certain cases, the full spectrum is preserved.

Three examples
(1) Circle S^{1}.

Our goal

Our goal is...
(1) To show that this deformation obtained by deforming underlying analytic and geometric structures.
(2) In certain cases, the full spectrum is preserved.

Three examples
(1) Circle S^{1}.
(2) Trace formula.

Our goal

Our goal is...
(1) To show that this deformation obtained by deforming underlying analytic and geometric structures.
(2) In certain cases, the full spectrum is preserved.

Three examples
(1) Circle S^{1}.
(2) Trace formula.
(3) RRG in complex geometry.

Our goal

Our goal is...
(1) To show that this deformation obtained by deforming underlying analytic and geometric structures.
(2) In certain cases, the full spectrum is preserved.

Three examples
(1) Circle S^{1}.
(2) Trace formula.
(3) RRG in complex geometry.

Two key ideas:

Our goal

Our goal is...
(1) To show that this deformation obtained by deforming underlying analytic and geometric structures.
(2) In certain cases, the full spectrum is preserved.

Three examples
(1) Circle S^{1}.
(2) Trace formula.
(3) RRG in complex geometry.

Two key ideas:
(1) Index theory.

Our goal

Our goal is...
(1) To show that this deformation obtained by deforming underlying analytic and geometric structures.
(2) In certain cases, the full spectrum is preserved.

Three examples
(1) Circle S^{1}.
(2) Trace formula.
(3) RRG in complex geometry.

Two key ideas:
(1) Index theory.
(2) Fourier transform.

Why is S^{1} important?

Why is S^{1} important?

- Closed geodesics modelled on S^{1}.

Why is S^{1} important?

- Closed geodesics modelled on S^{1}.
- One should expect that for S^{1}, the deformation is trivial.

Four identities

Four identities

- $1+1=2$.

Four identities

- $1+1=2$.
- $(a+b)^{2}=a^{2}+2 a b+b^{2}$.

Four identities

- $1+1=2$.
- $(a+b)^{2}=a^{2}+2 a b+b^{2}$.
- $\int_{\mathbf{R}} e^{-y^{2} / 2} \frac{d y}{\sqrt{2 \pi}}=1$.

Four identities

- $1+1=2$.
- $(a+b)^{2}=a^{2}+2 a b+b^{2}$.
- $\int_{\mathbf{R}} e^{-y^{2} / 2} \frac{d y}{\sqrt{2 \pi}}=1$.
- $\int_{\mathbf{R}} e^{i y \xi-y^{2} / 2} \frac{d y}{\sqrt{2 \pi}}=e^{-\xi^{2} / 2}$.

Elliptic and hypoelliptic operators
The case of S^{1}
The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology Conclusion References

Proof of last identity

Proof of last identity

$$
\int_{\mathbf{R}} e^{i y \xi-y^{2} / 2} \frac{d y}{\sqrt{2 \pi}}=e^{-\xi^{2} / 2} \int_{\mathbf{R}} e^{-(y-i \xi)^{2} / 2} \frac{d y}{\sqrt{2 \pi}}
$$

Proof of last identity

$$
\begin{gathered}
\int_{\mathbf{R}} e^{i y \xi-y^{2} / 2} \frac{d y}{\sqrt{2 \pi}}=e^{-\xi^{2} / 2} \int_{\mathbf{R}} e^{-(y-i \xi)^{2} / 2} \frac{d y}{\sqrt{2 \pi}} \\
=e^{-\xi^{2} / 2} \int_{\mathbf{R}} e^{-y^{2} / 2} \frac{d y}{\sqrt{2 \pi}}=e^{-\xi^{2} / 2}
\end{gathered}
$$

Proof of last identity

$$
\begin{gathered}
\int_{\mathbf{R}} e^{i y \xi-y^{2} / 2} \frac{d y}{\sqrt{2 \pi}}=e^{-\xi^{2} / 2} \int_{\mathbf{R}} e^{-(y-i \xi)^{2} / 2} \frac{d y}{\sqrt{2 \pi}} \\
=e^{-\xi^{2} / 2} \int_{\mathbf{R}} e^{-y^{2} / 2} \frac{d y}{\sqrt{2 \pi}}=e^{-\xi^{2} / 2} .
\end{gathered}
$$

- Imaginary translation $y \rightarrow y+i \xi$ and analyticity of $e^{-y^{2} / 2}$.

Proof of last identity

$$
\begin{gathered}
\int_{\mathbf{R}} e^{i y \xi-y^{2} / 2} \frac{d y}{\sqrt{2 \pi}}=e^{-\xi^{2} / 2} \int_{\mathbf{R}} e^{-(y-i \xi)^{2} / 2} \frac{d y}{\sqrt{2 \pi}} \\
=e^{-\xi^{2} / 2} \int_{\mathbf{R}} e^{-y^{2} / 2} \frac{d y}{\sqrt{2 \pi}}=e^{-\xi^{2} / 2} .
\end{gathered}
$$

- Imaginary translation $y \rightarrow y+i \xi$ and analyticity of $e^{-y^{2} / 2}$.
- Fourier + analyticity.

The harmonic oscillator

The harmonic oscillator

- $H=\frac{1}{2}\left(-\frac{\partial^{2}}{\partial y^{2}}+y^{2}-1\right)$ harmonic oscillator.

The harmonic oscillator

- $H=\frac{1}{2}\left(-\frac{\partial^{2}}{\partial y^{2}}+y^{2}-1\right)$ harmonic oscillator.
- H self-adjoint elliptic, $\operatorname{Sp}(H)=\mathbf{N}$.

The harmonic oscillator

- $H=\frac{1}{2}\left(-\frac{\partial^{2}}{\partial y^{2}}+y^{2}-1\right)$ harmonic oscillator.
- H self-adjoint elliptic, $\operatorname{Sp}(H)=\mathbf{N}$.
- Ground state $=e^{-y^{2} / 2}$.

A formal translation

A formal translation

- Hypoelliptic Laplacian $L_{b}=\frac{H}{b^{2}}-\frac{y}{b} \frac{\partial}{\partial x}$.

A formal translation

- Hypoelliptic Laplacian $L_{b}=\frac{H}{b^{2}}-\frac{y}{b} \frac{\partial}{\partial x}$.
- $L_{b}=\frac{1}{2 b^{2}}\left(-\frac{\partial^{2}}{\partial y^{2}}+\left(y-b \frac{\partial}{\partial x}\right)^{2}-1\right)-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}$.

A formal translation

- Hypoelliptic Laplacian $L_{b}=\frac{H}{b^{2}}-\frac{y}{b} \frac{\partial}{\partial x}$.
- $L_{b}=\frac{1}{2 b^{2}}\left(-\frac{\partial^{2}}{\partial y^{2}}+\left(y-b \frac{\partial}{\partial x}\right)^{2}-1\right)-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}$.
- Make translation $y \rightarrow y+b \frac{\partial}{\partial x}$.

A formal translation

- Hypoelliptic Laplacian $L_{b}=\frac{H}{b^{2}}-\frac{y}{b} \frac{\partial}{\partial x}$.
- $L_{b}=\frac{1}{2 b^{2}}\left(-\frac{\partial^{2}}{\partial y^{2}}+\left(y-b \frac{\partial}{\partial x}\right)^{2}-1\right)-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}$.
- Make translation $y \rightarrow y+b \frac{\partial}{\partial x}$.
- Translation \simeq conjugation.

A conjugation of L_{b}

A conjugation of L_{b}

- $M=\frac{\partial^{2}}{\partial x \partial y}$ hyperbolic, $e^{b M}$ is not well defined.

A conjugation of L_{b}

- $M=\frac{\partial^{2}}{\partial x \partial y}$ hyperbolic, $e^{b M}$ is not well defined.
- Conjugation identity

$$
e^{b M} L_{b} e^{-b M}=\frac{1}{2 b^{2}}\left(-\frac{\partial^{2}}{\partial y^{2}}+y^{2}-1\right)-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}
$$

A conjugation of L_{b}

- $M=\frac{\partial^{2}}{\partial x \partial y}$ hyperbolic, $e^{b M}$ is not well defined.
- Conjugation identity

$$
e^{b M} L_{b} e^{-b M}=\frac{1}{2 b^{2}}\left(-\frac{\partial^{2}}{\partial y^{2}}+y^{2}-1\right)-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} .
$$

- L_{b} hypoelliptic (Hörmander),

A conjugation of L_{b}

- $M=\frac{\partial^{2}}{\partial x \partial y}$ hyperbolic, $e^{b M}$ is not well defined.
- Conjugation identity

$$
e^{b M} L_{b} e^{-b M}=\frac{1}{2 b^{2}}\left(-\frac{\partial^{2}}{\partial y^{2}}+y^{2}-1\right)-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} .
$$

- L_{b} hypoelliptic (Hörmander), $e^{b M} L_{b} e^{-b M}$ elliptic.

A conjugation of L_{b}

- $M=\frac{\partial^{2}}{\partial x \partial y}$ hyperbolic, $e^{b M}$ is not well defined.
- Conjugation identity

$$
e^{b M} L_{b} e^{-b M}=\frac{1}{2 b^{2}}\left(-\frac{\partial^{2}}{\partial y^{2}}+y^{2}-1\right)-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}
$$

- L_{b} hypoelliptic (Hörmander), $e^{b M} L_{b} e^{-b M}$ elliptic.
- L_{b} non self-adjoint, $e^{b M} L_{b} e^{-b M}$ self-adjoint.

Conjugation is legitimate

Conjugation is legitimate

- Take $(x, y) \in S^{1} \times \mathbf{R}$.

Conjugation is legitimate

- Take $(x, y) \in S^{1} \times \mathbf{R}$.
- By analyticity, $y \rightarrow y+i b \xi$ acts on Hermite polynomials with Gaussian weight (eigenfunctions of $H)$.

Conjugation is legitimate

- Take $(x, y) \in S^{1} \times \mathbf{R}$.
- By analyticity, $y \rightarrow y+i b \xi$ acts on Hermite polynomials with Gaussian weight (eigenfunctions of $H)$.
- L_{b} can be explicitly diagonalized.

Conjugation is legitimate

- Take $(x, y) \in S^{1} \times \mathbf{R}$.
- By analyticity, $y \rightarrow y+i b \xi$ acts on Hermite polynomials with Gaussian weight (eigenfunctions of $H)$.
- L_{b} can be explicitly diagonalized.
- L_{b} hypoelliptic non self-adjoint isospectral to $e^{b M} L_{b} e^{-b M}$ elliptic self-adjoint.

The spectrum of L_{b}

The spectrum of L_{b}

$$
\text { - } L_{b}=\frac{1}{2 b^{2}}\left(-\frac{\partial^{2}}{\partial y^{2}}+y^{2}-1\right)-\frac{y}{b} \frac{\partial}{\partial x} \text {. }
$$

The spectrum of L_{b}

- $L_{b}=\frac{1}{2 b^{2}}\left(-\frac{\partial^{2}}{\partial y^{2}}+y^{2}-1\right)-\frac{y}{b} \frac{\partial}{\partial x}$.
- $\operatorname{Sp}\left(L_{b}\right)=\frac{\mathbf{N}}{b^{2}}+\left\{2 k^{2} \pi^{2}, k \in \mathbf{Z}\right\}$ is real...

The spectrum of L_{b}

- $L_{b}=\frac{1}{2 b^{2}}\left(-\frac{\partial^{2}}{\partial y^{2}}+y^{2}-1\right)-\frac{y}{b} \frac{\partial}{\partial x}$.
- $\operatorname{Sp}\left(L_{b}\right)=\frac{\mathbf{N}}{b^{2}}+\left\{2 k^{2} \pi^{2}, k \in \mathbf{Z}\right\}$ is real...
- ... in spite of the fact that when $b \rightarrow \infty,-\frac{y}{b} \frac{\partial}{\partial x}$ dominates $\frac{H}{b^{2}}$.

The spectrum of L_{b}

- $L_{b}=\frac{1}{2 b^{2}}\left(-\frac{\partial^{2}}{\partial y^{2}}+y^{2}-1\right)-\frac{y}{b} \frac{\partial}{\partial x}$.
- $\operatorname{Sp}\left(L_{b}\right)=\frac{\mathbf{N}}{b^{2}}+\left\{2 k^{2} \pi^{2}, k \in \mathbf{Z}\right\}$ is real...
- ... in spite of the fact that when $b \rightarrow \infty,-\frac{y}{b} \frac{\partial}{\partial x}$ dominates $\frac{H}{b^{2}}$.
- In $\operatorname{Sp}\left(L_{b}\right)$, spectrum of $-\Delta^{S^{1}} / 2$ remains rigidly embedded.

The spectrum of L_{b}

- $L_{b}=\frac{1}{2 b^{2}}\left(-\frac{\partial^{2}}{\partial y^{2}}+y^{2}-1\right)-\frac{y}{b} \frac{\partial}{\partial x}$.
- $\operatorname{Sp}\left(L_{b}\right)=\frac{\mathbf{N}}{b^{2}}+\left\{2 k^{2} \pi^{2}, k \in \mathbf{Z}\right\}$ is real...
- ... in spite of the fact that when $b \rightarrow \infty,-\frac{y}{b} \frac{\partial}{\partial x}$ dominates $\frac{H}{b^{2}}$.
- In $\operatorname{Sp}\left(L_{b}\right)$, spectrum of $-\Delta^{S^{1}} / 2$ remains rigidly embedded.
- Origin of rigidity is cohomological.

The spectrum of L_{b}

- $L_{b}=\frac{1}{2 b^{2}}\left(-\frac{\partial^{2}}{\partial y^{2}}+y^{2}-1\right)-\frac{y}{b} \frac{\partial}{\partial x}$.
- $\operatorname{Sp}\left(L_{b}\right)=\frac{\mathbf{N}}{b^{2}}+\left\{2 k^{2} \pi^{2}, k \in \mathbf{Z}\right\}$ is real...
- ... in spite of the fact that when $b \rightarrow \infty,-\frac{y}{b} \frac{\partial}{\partial x}$ dominates $\frac{H}{b^{2}}$.
- In $\operatorname{Sp}\left(L_{b}\right)$, spectrum of $-\Delta^{S^{1}} / 2$ remains rigidly embedded.
- Origin of rigidity is cohomological.
- When $b \rightarrow 0$, only $\operatorname{Sp}\left(-\Delta^{S^{1}} / 2\right)$ survives.

The spectrum of L_{b}

- $L_{b}=\frac{1}{2 b^{2}}\left(-\frac{\partial^{2}}{\partial y^{2}}+y^{2}-1\right)-\frac{y}{b} \frac{\partial}{\partial x}$.
- $\operatorname{Sp}\left(L_{b}\right)=\frac{\mathbf{N}}{b^{2}}+\left\{2 k^{2} \pi^{2}, k \in \mathbf{Z}\right\}$ is real...
- ... in spite of the fact that when $b \rightarrow \infty,-\frac{y}{b} \frac{\partial}{\partial x}$ dominates $\frac{H}{b^{2}}$.
- In $\operatorname{Sp}\left(L_{b}\right)$, spectrum of $-\Delta^{S^{1}} / 2$ remains rigidly embedded.
- Origin of rigidity is cohomological.
- When $b \rightarrow 0$, only $\operatorname{Sp}\left(-\Delta^{S^{1}} / 2\right)$ survives.
- When $b \rightarrow+\infty, L_{b} \simeq \frac{1}{2} y^{2}-y \frac{\partial}{\partial x}$.

Poisson's formula

Poisson's formula

- We use supersymmetry to eliminate $\frac{\mathrm{N}}{b^{2}}$ dans $\operatorname{Sp}\left(L_{b}\right)$.

Poisson's formula

- We use supersymmetry to eliminate $\frac{\mathbf{N}}{b^{2}}$ dans $\operatorname{Sp}\left(L_{b}\right)$. - $N^{\Lambda^{\prime}(\mathbf{R})}$ degree counting operator on $\Lambda^{\prime}(\mathbf{R})$.

Poisson's formula

- We use supersymmetry to eliminate $\frac{\mathbf{N}}{b^{2}}$ dans $\operatorname{Sp}\left(L_{b}\right)$.
- $N^{\Lambda^{\prime}(\mathbf{R})}$ degree counting operator on $\Lambda^{\prime}(\mathbf{R})$.
- $\mathcal{L}_{b}=L_{b}+\frac{N^{\Lambda^{\prime}(\mathbf{R})}}{b^{2}}$ has same spectrum as L_{b}.

Poisson's formula

- We use supersymmetry to eliminate $\frac{\mathbf{N}}{b^{2}}$ dans $\operatorname{Sp}\left(L_{b}\right)$.
- $N^{\Lambda^{\prime}(\mathbf{R})}$ degree counting operator on $\Lambda^{\prime}(\mathbf{R})$.
- $\mathcal{L}_{b}=L_{b}+\frac{N^{\Lambda^{\prime}(\mathbf{R})}}{b^{2}}$ has same spectrum as L_{b}.
- Remember \mathcal{L}_{b} !

Poisson's formula

- We use supersymmetry to eliminate $\frac{\mathbf{N}}{b^{2}}$ dans $\operatorname{Sp}\left(L_{b}\right)$.
- $N^{\Lambda^{\prime}(\mathbf{R})}$ degree counting operator on $\Lambda^{\prime}(\mathbf{R})$.
- $\mathcal{L}_{b}=L_{b}+\frac{N^{\Lambda^{\prime}(\mathbf{R})}}{b^{2}}$ has same spectrum as L_{b}.
- Remember \mathcal{L}_{b} !
- $\operatorname{Tr}\left[\exp \left(t \partial^{2} / \partial x^{2} / 2\right)\right]=\operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-t \mathcal{L}_{b}\right)\right]$.

Poisson's formula

- We use supersymmetry to eliminate $\frac{\mathbf{N}}{b^{2}}$ dans $\operatorname{Sp}\left(L_{b}\right)$.
- $N^{\Lambda^{\prime}(\mathbf{R})}$ degree counting operator on $\Lambda^{\prime}(\mathbf{R})$.
- $\mathcal{L}_{b}=L_{b}+\frac{N^{\Lambda^{\prime}(\mathbf{R})}}{b^{2}}$ has same spectrum as L_{b}.
- Remember \mathcal{L}_{b} !
- $\operatorname{Tr}\left[\exp \left(t \partial^{2} / \partial x^{2} / 2\right)\right]=\operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-t \mathcal{L}_{b}\right)\right]$.
- By making $b \rightarrow+\infty$, we get Poisson's formula par interpolation.

Elliptic and hypoelliptic operators
The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

A compact manifold

A compact manifold

- X compact Riemannian manifold.

A compact manifold

- X compact Riemannian manifold. - Δ^{X} Laplacian on X.

The trace formula as a Lefschetz formula

A compact manifold

- X compact Riemannian manifold.
- Δ^{X} Laplacian on X.
- $\exp \left(t \Delta^{X} / 2\right)$ heat operator on $C^{\infty}(X, \mathbf{R})$.

The trace formula as a Lefschetz formula

A compact manifold

- X compact Riemannian manifold.
- Δ^{X} Laplacian on X.
- $\exp \left(t \Delta^{X} / 2\right)$ heat operator on $C^{\infty}(X, \mathbf{R})$.
- $\exp \left(t \Delta^{X} / 2\right)$ can be considered as an element g of a semigroup acting on $C^{\infty}(X, \mathbf{R})$.

Elliptic and hypoelliptic operators
The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

Trace and cohomology

Trace and cohomology

- One will imagine that $C^{\infty}(X, \mathbf{R})$ is the cohomology of an acyclic complex $(R, d) \ldots$

Trace and cohomology

- One will imagine that $C^{\infty}(X, \mathbf{R})$ is the cohomology of an acyclic complex $(R, d) \ldots$
- ...s so that $H^{0}(R)=C^{\infty}(X, \mathbf{R})$, and $H^{i}(R)=0, i>0$.

Trace and cohomology

- One will imagine that $C^{\infty}(X, \mathbf{R})$ is the cohomology of an acyclic complex $(R, d) \ldots$
- ...so that $H^{0}(R)=C^{\infty}(X, \mathbf{R})$, and $H^{i}(R)=0, i>0$.
- $\operatorname{Tr}^{C^{\infty}(X, \mathbf{R})}\left[\exp \left(t \Delta^{X} / 2\right)\right]=$ trace $\operatorname{Tr}[g]$ of a group element g acting on cohomology of this complex.

Trace and cohomology

- One will imagine that $C^{\infty}(X, \mathbf{R})$ is the cohomology of an acyclic complex $(R, d) \ldots$
- ...so that $H^{0}(R)=C^{\infty}(X, \mathbf{R})$, and $H^{i}(R)=0, i>0$.
- $\operatorname{Tr}^{C^{\infty}(X, \mathbf{R})}\left[\exp \left(t \Delta^{X} / 2\right)\right]=$ trace $\operatorname{Tr}[g]$ of a group element g acting on cohomology of this complex.
- Beware: This cohomology is now infinite dimensional.

The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

Two questions

The trace formula as a Lefschetz formula

Two questions

(1) Can one resolve $C^{\infty}(X, \mathbf{R})$ by an acyclic complex R on which $g=\exp \left(t \Delta^{X} / 2\right)$ acts?

Two questions

(1) Can one resolve $C^{\infty}(X, \mathbf{R})$ by an acyclic complex R on which $g=\exp \left(t \Delta^{X} / 2\right)$ acts?
(2) Is there a Dirac operator D_{R} acting on R, and commuting with $g=\exp \left(t \Delta^{X} / 2\right)$ such that

Two questions

(1) Can one resolve $C^{\infty}(X, \mathbf{R})$ by an acyclic complex R on which $g=\exp \left(t \Delta^{X} / 2\right)$ acts?
(2) Is there a Dirac operator D_{R} acting on R, and commuting with $g=\exp \left(t \Delta^{X} / 2\right)$ such that

$$
\operatorname{Tr}^{C^{\infty}(X, \mathbf{R})}[g]=\operatorname{Tr}_{\mathrm{s}}^{R}\left[g \exp \left(-D_{R}^{2} / 2 b^{2}\right)\right]
$$

Two questions

(1) Can one resolve $C^{\infty}(X, \mathbf{R})$ by an acyclic complex R on which $g=\exp \left(t \Delta^{X} / 2\right)$ acts?
(2) Is there a Dirac operator D_{R} acting on R, and commuting with $g=\exp \left(t \Delta^{X} / 2\right)$ such that

$$
\operatorname{Tr}^{C^{\infty}(X, \mathbf{R})}[g]=\operatorname{Tr}_{\mathrm{s}}^{R}\left[g \exp \left(-D_{R}^{2} / 2 b^{2}\right)\right]
$$

- Analogue of formula of McKean-Singer $\chi(g)=\operatorname{Tr}_{\mathrm{s}}\left[g \exp \left(-D_{R}^{2} / 2 b^{2}\right)\right] \ldots$

Two questions

(1) Can one resolve $C^{\infty}(X, \mathbf{R})$ by an acyclic complex R on which $g=\exp \left(t \Delta^{X} / 2\right)$ acts?
(2) Is there a Dirac operator D_{R} acting on R, and commuting with $g=\exp \left(t \Delta^{X} / 2\right)$ such that

$$
\operatorname{Tr}^{C^{\infty}(X, \mathbf{R})}[g]=\operatorname{Tr}_{\mathrm{s}}^{R}\left[g \exp \left(-D_{R}^{2} / 2 b^{2}\right)\right]
$$

- Analogue of formula of McKean-Singer $\chi(g)=\operatorname{Tr}_{\mathrm{s}}\left[g \exp \left(-D_{R}^{2} / 2 b^{2}\right)\right] \ldots$
- ... used in proof of Lefschetz fixed point formulas of Atiyah-Bott.

Elliptic and hypoelliptic operators
The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

The answer is yes!

The answer is yes!

- E real vector bundle on X, \mathcal{E} total space of E.

The answer is yes!

- E real vector bundle on X, \mathcal{E} total space of E.
- Embed X as zero section of \mathcal{E}.

The answer is yes!

- E real vector bundle on X, \mathcal{E} total space of E.
- Embed X as zero section of \mathcal{E}.
- $R=\left(\Omega^{\cdot}(E), d^{E}\right)$ de Rham complex along the fibres E.

The answer is yes!

- E real vector bundle on X, \mathcal{E} total space of E.
- Embed X as zero section of \mathcal{E}.
- $R=\left(\Omega^{\cdot}(E), d^{E}\right)$ de Rham complex along the fibres E.
- Its cohomology is just $C^{\infty}(X, \mathbf{R}) \ldots$

The answer is yes!

- E real vector bundle on X, \mathcal{E} total space of E.
- Embed X as zero section of \mathcal{E}.
- $R=\left(\Omega(E), d^{E}\right)$ de Rham complex along the fibres E.
- Its cohomology is just $C^{\infty}(X, \mathbf{R}) \ldots$
- ...so that R resolves $C^{\infty}(X, \mathbf{R})$.

Elliptic and hypoelliptic operators
The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

The answer is no!

The answer is no!

(1) In general $g=\exp \left(t \Delta^{X} / 2\right)$ does not act on $R \ldots$

The answer is no!

(1) In general $g=\exp \left(t \Delta^{X} / 2\right)$ does not act on $R \ldots$
(2) \ldots and there is no Dirac operator D_{R} commuting with g.

The case of locally symmetric spaces

The case of locally symmetric spaces

- X locally symmetric.

The case of locally symmetric spaces

- X locally symmetric.
- Casimir operator $C^{\mathfrak{g}}$ is in the centre of $U(\mathfrak{g})$.

The case of locally symmetric spaces

- X locally symmetric.
- Casimir operator $C^{\mathfrak{g}}$ is in the centre of $U(\mathfrak{g})$.
- $C^{\mathfrak{g}}$ acts on $C^{\infty}(X, \mathbf{R})$ like $-\Delta^{X}$.

The case of locally symmetric spaces

- X locally symmetric.
- Casimir operator $C^{\mathfrak{g}}$ is in the centre of $U(\mathfrak{g})$.
- $C^{\mathfrak{g}}$ acts on $C^{\infty}(X, \mathbf{R})$ like $-\Delta^{X}$.
- There is some hope.

The case of locally symmetric spaces

- X locally symmetric.
- Casimir operator $C^{\mathfrak{g}}$ is in the centre of $U(\mathfrak{g})$.
- $C^{\mathfrak{g}}$ acts on $C^{\infty}(X, \mathbf{R})$ like $-\Delta^{X}$.
- There is some hope.
- The problem is to construct the Dirac operator D_{R}.

Elliptic and hypoelliptic operators
The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

The case of S^{1}

The trace formula as a Lefschetz formula

The case of S^{1}

- Our operators will act on $C^{\infty}\left(S^{1} \times \mathbf{R}, \Lambda^{\prime}(\mathbf{R})\right)$.

The case of S^{1}

- Our operators will act on $C^{\infty}\left(S^{1} \times \mathbf{R}, \Lambda^{\prime}(\mathbf{R})\right)$.
- $\mathfrak{D}_{b}=-d_{x}+d_{x}^{*}+\frac{1}{b}\left(d_{y}+y \wedge+d_{y}^{*}+i_{y}\right)$.

The case of S^{1}

- Our operators will act on $C^{\infty}\left(S^{1} \times \mathbf{R}, \Lambda^{\prime}(\mathbf{R})\right)$.
- $\mathfrak{D}_{b}=-d_{x}+d_{x}^{*}+\frac{1}{b}\left(d_{y}+y \wedge+d_{y}^{*}+i_{y}\right)$.
- $d_{y}+y \wedge=e^{-y^{2} / 2} d e^{y^{2} / 2}$ Witten twist of d_{y}.

The trace formula as a Lefschetz formula

The case of S^{1}

- Our operators will act on $C^{\infty}\left(S^{1} \times \mathbf{R}, \Lambda^{\prime}(\mathbf{R})\right)$.
- $\mathfrak{D}_{b}=-d_{x}+d_{x}^{*}+\frac{1}{b}\left(d_{y}+y \wedge+d_{y}^{*}+i_{y}\right)$.
- $d_{y}+y \wedge=e^{-y^{2} / 2} d e^{y^{2} / 2}$ Witten twist of d_{y}.
- Complex $\left(C^{\infty}\left(S^{1} \times \mathbf{R}, \Lambda^{\cdot}(\mathbf{R})\right), d+y \wedge\right)$ is a resolution of $C^{\infty}\left(S^{1}, \mathbf{R}\right)$.

The trace formula as a Lefschetz formula

The case of S^{1}

- Our operators will act on $C^{\infty}\left(S^{1} \times \mathbf{R}, \Lambda^{\prime}(\mathbf{R})\right)$.
- $\mathfrak{D}_{b}=-d_{x}+d_{x}^{*}+\frac{1}{b}\left(d_{y}+y \wedge+d_{y}^{*}+i_{y}\right)$.
- $d_{y}+y \wedge=e^{-y^{2} / 2} d e^{y^{2} / 2}$ Witten twist of d_{y}.
- Complex $\left(C^{\infty}\left(S^{1} \times \mathbf{R}, \Lambda^{\cdot}(\mathbf{R})\right), d+y \wedge\right)$ is a resolution of $C^{\infty}\left(S^{1}, \mathbf{R}\right)$.
- $\mathcal{L}_{b}=-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2} \mathfrak{D}_{b}^{2}$.

The case of S^{1}

- Our operators will act on $C^{\infty}\left(S^{1} \times \mathbf{R}, \Lambda^{\prime}(\mathbf{R})\right)$.
- $\mathfrak{D}_{b}=-d_{x}+d_{x}^{*}+\frac{1}{b}\left(d_{y}+y \wedge+d_{y}^{*}+i_{y}\right)$.
- $d_{y}+y \wedge=e^{-y^{2} / 2} d e^{y^{2} / 2}$ Witten twist of d_{y}.
- Complex $\left(C^{\infty}\left(S^{1} \times \mathbf{R}, \Lambda(\mathbf{R})\right), d+y \wedge\right)$ is a resolution of $C^{\infty}\left(S^{1}, \mathbf{R}\right)$.
- $\mathcal{L}_{b}=-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2} \mathfrak{D}_{b}^{2}$.
- $\mathcal{L}_{b}=\frac{1}{2 b^{2}}\left(-\frac{\partial^{2}}{\partial y^{2}}+y^{2}-1\right)+\frac{N^{\Lambda^{\prime}(\mathbf{R})}}{b^{2}}-\frac{1}{b} y \frac{\partial}{\partial x}$ already met!

The case of S^{1}

- Our operators will act on $C^{\infty}\left(S^{1} \times \mathbf{R}, \Lambda^{\prime}(\mathbf{R})\right)$.
- $\mathfrak{D}_{b}=-d_{x}+d_{x}^{*}+\frac{1}{b}\left(d_{y}+y \wedge+d_{y}^{*}+i_{y}\right)$.
- $d_{y}+y \wedge=e^{-y^{2} / 2} d e^{y^{2} / 2}$ Witten twist of d_{y}.
- Complex $\left(C^{\infty}\left(S^{1} \times \mathbf{R}, \Lambda^{\cdot}(\mathbf{R})\right), d+y \wedge\right)$ is a resolution of $C^{\infty}\left(S^{1}, \mathbf{R}\right)$.
- $\mathcal{L}_{b}=-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2} \mathfrak{D}_{b}^{2}$.
- $\mathcal{L}_{b}=\frac{1}{2 b^{2}}\left(-\frac{\partial^{2}}{\partial y^{2}}+y^{2}-1\right)+\frac{N^{\Lambda^{\prime}(\mathbf{R})}}{b^{2}}-\frac{1}{b} y \frac{\partial}{\partial x}$ already met!
- $\operatorname{Tr}\left[\exp \left(t \Delta^{S^{1}} / 2\right)\right]=\operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-t \mathcal{L}_{b}\right)\right]$.

The case of S^{1}

- Our operators will act on $C^{\infty}\left(S^{1} \times \mathbf{R}, \Lambda^{\prime}(\mathbf{R})\right)$.
- $\mathfrak{D}_{b}=-d_{x}+d_{x}^{*}+\frac{1}{b}\left(d_{y}+y \wedge+d_{y}^{*}+i_{y}\right)$.
- $d_{y}+y \wedge=e^{-y^{2} / 2} d e^{y^{2} / 2}$ Witten twist of d_{y}.
- Complex $\left(C^{\infty}\left(S^{1} \times \mathbf{R}, \Lambda(\mathbf{R})\right), d+y \wedge\right)$ is a resolution of $C^{\infty}\left(S^{1}, \mathbf{R}\right)$.
- $\mathcal{L}_{b}=-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2} \mathfrak{D}_{b}^{2}$.
- $\mathcal{L}_{b}=\frac{1}{2 b^{2}}\left(-\frac{\partial^{2}}{\partial y^{2}}+y^{2}-1\right)+\frac{N^{\Lambda^{\prime}(\mathbf{R})}}{b^{2}}-\frac{1}{b} y \frac{\partial}{\partial x}$ already met!
- $\operatorname{Tr}\left[\exp \left(t \Delta^{S^{1}} / 2\right)\right]=\operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-t \mathcal{L}_{b}\right)\right]$.
- $\operatorname{Tr}\left[\exp \left(t \Delta^{S^{1}} / 2\right)\right]=\operatorname{Tr}_{\mathrm{s}}\left[g \exp \left(-t \mathfrak{D}_{b}^{2} / 2\right)\right]$ with $g=\exp \left(t \frac{\partial^{2}}{\partial x^{2}} / 2\right)$.

Elliptic and hypoelliptic operators
The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

The symmetric space X

The symmetric space X

- G reductive group, K maximal compact, $X=G / K$ symmetric space.

The symmetric space X

- G reductive group, K maximal compact, $X=G / K$ symmetric space.
- $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$ Cartan splitting.

Elliptic and hypoelliptic operators
The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

Resolutions

The trace formula as a Lefschetz formula

Resolutions

- \mathbf{R}_{x} replaced by G, \mathbf{R}_{y} replaced by \mathfrak{g}.

Resolutions

- \mathbf{R}_{x} replaced by G, \mathbf{R}_{y} replaced by \mathfrak{g}.
- $-d_{x}+d_{x}^{*}$ replaced by Dirac operator of Kostant \widehat{D}^{K}.

Resolutions

- \mathbf{R}_{x} replaced by G, \mathbf{R}_{y} replaced by \mathfrak{g}.
- $-d_{x}+d_{x}^{*}$ replaced by Dirac operator of Kostant \widehat{D}^{K}.
- One should treat differently \mathfrak{p} and \mathfrak{k}.

Resolutions

- \mathbf{R}_{x} replaced by G, \mathbf{R}_{y} replaced by \mathfrak{g}.
- $-d_{x}+d_{x}^{*}$ replaced by Dirac operator of Kostant \widehat{D}^{K}.
- One should treat differently \mathfrak{p} and \mathfrak{k}.
- $\mathfrak{D}_{b}=\widehat{D}^{K}+i c\left(\left[Y^{\mathfrak{p}}, Y^{\mathfrak{k}}\right]\right)+\frac{\sqrt{2}}{b}\left(d^{\mathfrak{p}}+Y^{\mathfrak{p}} \wedge+d^{\mathfrak{p} *}+i_{Y^{\mathfrak{p}}}\right)$

Resolutions

- \mathbf{R}_{x} replaced by G, \mathbf{R}_{y} replaced by \mathfrak{g}.
- $-d_{x}+d_{x}^{*}$ replaced by Dirac operator of Kostant \widehat{D}^{K}.
- One should treat differently \mathfrak{p} and \mathfrak{k}.
- $\mathfrak{D}_{b}=\widehat{D}^{K}+i c\left(\left[Y^{\mathfrak{p}}, Y^{\mathfrak{k}}\right]\right)+\frac{\sqrt{2}}{b}\left(d^{\mathfrak{p}}+Y^{\mathfrak{p}} \wedge+d^{\mathfrak{p} *}+i_{Y^{\mathfrak{p}}}\right)$ $+\frac{\sqrt{-2}}{b}\left(-d^{\mathfrak{k}}-Y^{\mathfrak{k}} \wedge+d^{\mathfrak{k} *}+i_{Y^{\mathfrak{k}}}\right)$.

Resolutions

- \mathbf{R}_{x} replaced by G, \mathbf{R}_{y} replaced by \mathfrak{g}.
- $-d_{x}+d_{x}^{*}$ replaced by Dirac operator of Kostant \widehat{D}^{K}.
- One should treat differently \mathfrak{p} and \mathfrak{k}.
- $\mathfrak{D}_{b}=\widehat{D}^{K}+i c\left(\left[Y^{\mathfrak{p}}, Y^{\mathfrak{k}}\right]\right)+\frac{\sqrt{2}}{b}\left(d^{\mathfrak{p}}+Y^{\mathfrak{p}} \wedge+d^{\mathfrak{p} *}+i_{Y^{\mathfrak{p}}}\right)$ $+\frac{\sqrt{-2}}{b}\left(-d^{\mathfrak{k}}-Y^{\mathfrak{k}} \wedge+d^{\mathfrak{k}}+i_{Y^{\mathfrak{k}}}\right)$.
- \widehat{D}^{K} Dirac operator of Kostant.

Elliptic and hypoelliptic operators
The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

The Dirac operator of Kostant

The trace formula as a Lefschetz formula

The Dirac operator of Kostant

- $\mathrm{U}(\mathfrak{g})$ enveloping algebra.

The trace formula as a Lefschetz formula

The Dirac operator of Kostant

- $\mathrm{U}(\mathfrak{g})$ enveloping algebra.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g},-B)$.

The trace formula as a Lefschetz formula

The Dirac operator of Kostant

- $\mathrm{U}(\mathfrak{g})$ enveloping algebra.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g},-B)$.
- $\Lambda^{\prime}\left(\mathfrak{g}^{*}\right) \widehat{c}(\mathfrak{g})$-module.

The trace formula as a Lefschetz formula

The Dirac operator of Kostant

- $\mathrm{U}(\mathfrak{g})$ enveloping algebra.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g},-B)$.
- $\Lambda^{\prime}\left(\mathfrak{g}^{*}\right) \widehat{c}(\mathfrak{g})$-module.
- $\kappa^{\mathfrak{g}} \in \Lambda^{3}\left(\mathfrak{g}^{*}\right)$ with $\kappa^{\mathfrak{g}}(a, b, c)=B([a, b], c)$.

The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology

The Dirac operator of Kostant

- $\mathrm{U}(\mathfrak{g})$ enveloping algebra.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g},-B)$.
- $\Lambda^{\prime}\left(\mathfrak{g}^{*}\right) \widehat{c}(\mathfrak{g})$-module.
- $\kappa^{\mathfrak{g}} \in \Lambda^{3}\left(\mathfrak{g}^{*}\right)$ with $\kappa^{\mathfrak{g}}(a, b, c)=B([a, b], c)$.
- $\widehat{D}^{K} \in \widehat{c}(\mathfrak{g}) \otimes \mathrm{U}(\mathfrak{g})$.

The Dirac operator of Kostant

- $\mathrm{U}(\mathfrak{g})$ enveloping algebra.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g},-B)$.
- $\Lambda^{\prime}\left(\mathfrak{g}^{*}\right) \widehat{c}(\mathfrak{g})$-module.
- $\kappa^{\mathfrak{g}} \in \Lambda^{3}\left(\mathfrak{g}^{*}\right)$ with $\kappa^{\mathfrak{g}}(a, b, c)=B([a, b], c)$.
- $\widehat{D}^{K} \in \widehat{c}(\mathfrak{g}) \otimes \mathrm{U}(\mathfrak{g})$.
- $\widehat{D}^{K}=\widehat{c}\left(e_{i}^{*}\right) e_{i}+\frac{1}{2} \widehat{c}\left(-\kappa^{\mathfrak{g}}\right)$.

The Dirac operator of Kostant

- $\mathrm{U}(\mathfrak{g})$ enveloping algebra.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g},-B)$.
- $\Lambda^{\prime}\left(\mathfrak{g}^{*}\right) \widehat{c}(\mathfrak{g})$-module.
- $\kappa^{\mathfrak{g}} \in \Lambda^{3}\left(\mathfrak{g}^{*}\right)$ with $\kappa^{\mathfrak{g}}(a, b, c)=B([a, b], c)$.
- $\widehat{D}^{K} \in \widehat{c}(\mathfrak{g}) \otimes \mathrm{U}(\mathfrak{g})$.
- $\widehat{D}^{K}=\widehat{c}\left(e_{i}^{*}\right) e_{i}+\frac{1}{2} \widehat{c}\left(-\kappa^{\mathfrak{g}}\right)$.
- $\widehat{D}^{K, 2}=-C^{\mathfrak{g}}+c .$.

The Dirac operator of Kostant

- $\mathrm{U}(\mathfrak{g})$ enveloping algebra.
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g},-B)$.
- $\Lambda^{\prime}\left(\mathfrak{g}^{*}\right) \widehat{c}(\mathfrak{g})$-module.
- $\kappa^{\mathfrak{g}} \in \Lambda^{3}\left(\mathfrak{g}^{*}\right)$ with $\kappa^{\mathfrak{g}}(a, b, c)=B([a, b], c)$.
- $\widehat{D}^{K} \in \widehat{c}(\mathfrak{g}) \otimes \mathrm{U}(\mathfrak{g})$.
- $\widehat{D}^{K}=\widehat{c}\left(e_{i}^{*}\right) e_{i}+\frac{1}{2} \widehat{c}\left(-\kappa^{\mathfrak{g}}\right)$.
- $\widehat{D}^{K, 2}=-C^{\mathfrak{g}}+c .$.
- \ldots analogue of $\left(-d_{x}+d_{x}^{*}\right)^{2}=\frac{\partial^{2}}{\partial x^{2}}$.

Elliptic and hypoelliptic operators
The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

The hypoelliptic Laplacian

The hypoelliptic Laplacian

- $\mathfrak{D}_{b}=\widehat{D}^{K}+$

$$
+\frac{\sqrt{2}}{b}\left(d^{\mathfrak{p}}+Y^{\mathfrak{p}} \wedge+d^{p \boldsymbol{p}}+i_{Y^{\mathfrak{p}}}\right)
$$

The hypoelliptic Laplacian

- $\mathfrak{D}_{b}=\widehat{D}^{K}+i c\left(\left[Y^{\mathfrak{p}}, Y^{\mathfrak{k}}\right]\right)+\frac{\sqrt{2}}{b}\left(d^{\mathfrak{p}}+Y^{\mathfrak{p}} \wedge+d^{\mathfrak{p} *}+i_{Y^{\mathfrak{p}}}\right)$

The hypoelliptic Laplacian

- $\mathfrak{D}_{b}=\widehat{D}^{K}+i c\left(\left[Y^{\mathfrak{p}}, Y^{\mathfrak{k}}\right]\right)+\frac{\sqrt{2}}{b}\left(d^{\mathfrak{p}}+Y^{\mathfrak{p}} \wedge+d^{\mathfrak{p} *}+i_{Y^{\mathfrak{p}}}\right)$ $+\frac{\sqrt{-2}}{b}\left(-d^{\mathfrak{k}}-Y^{\mathfrak{k}} \wedge+d^{\mathfrak{k} *}+i_{Y^{\mathfrak{k}}}\right)$.

The hypoelliptic Laplacian

- $\mathfrak{D}_{b}=\widehat{D}^{K}+i c\left(\left[Y^{\mathfrak{p}}, Y^{\mathfrak{k}}\right]\right)+\frac{\sqrt{2}}{b}\left(d^{\mathfrak{p}}+Y^{\mathfrak{p}} \wedge+d^{\mathfrak{p} *}+i_{Y^{\mathfrak{p}}}\right)$ $+\frac{\sqrt{-2}}{b}\left(-d^{\mathfrak{k}}-Y^{\mathfrak{k}} \wedge+d^{\mathfrak{k} *}+i_{Y^{\mathfrak{k}}}\right)$.
- $\mathcal{L}_{b}=\frac{1}{2}\left(-\widehat{D}^{K, 2}+\mathfrak{D}_{b}^{2}\right)$.

The hypoelliptic Laplacian

- $\mathfrak{D}_{b}=\widehat{D}^{K}+i c\left(\left[Y^{\mathfrak{p}}, Y^{\mathfrak{k}}\right]\right)+\frac{\sqrt{2}}{b}\left(d^{\mathfrak{p}}+Y^{\mathfrak{p}} \wedge+d^{\mathfrak{p} *}+i_{Y^{\mathfrak{p}}}\right)$

$$
+\frac{\sqrt{-2}}{b}\left(-d^{\mathfrak{k}}-Y^{\mathfrak{k}} \wedge+d^{\mathfrak{l} *}+i_{Y^{\mathfrak{k}}}\right) .
$$

- $\mathcal{L}_{b}=\frac{1}{2}\left(-\widehat{D}^{K, 2}+\mathfrak{D}_{b}^{2}\right)$.
- Remember $\mathcal{L}_{b}=-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2} \mathfrak{D}_{b}^{2}$.

Elliptic and hypoelliptic operators
The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

The descent to X

The descent to X

- Quotient the previous constructions by K, and descend to X.

The descent to X

- Quotient the previous constructions by K, and descend to X.
- X carries the flat bundle $T X \oplus N$ modelled on $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$.

The descent to X

- Quotient the previous constructions by K, and descend to X.
- X carries the flat bundle $T X \oplus N$ modelled on $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$.
- $\widehat{\mathcal{X}}$ total space of $T X \oplus N$.

The descent to X

- Quotient the previous constructions by K, and descend to X.
- X carries the flat bundle $T X \oplus N$ modelled on $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$.
- $\widehat{\mathcal{X}}$ total space of $T X \oplus N$.
- $\mathfrak{D}_{b}, \mathcal{L}_{b}$ descend to $\mathfrak{D}_{b}^{X}, \mathcal{L}_{b}^{X}$ acting on $C^{\infty}\left(\widehat{\mathcal{X}}, \pi^{*} \Lambda^{*}\left(T^{*} X \oplus N^{*}\right)\right)$.

The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

An infinite dimensional vector bundle on X

The trace formula as a Lefschetz formula

An infinite dimensional vector bundle on X

- Our operators act on $C^{\infty}\left(\widehat{\mathcal{X}}, \pi^{*} \Lambda^{*}\left(T^{*} X \oplus N^{*}\right)\right)$.

The trace formula as a Lefschetz formula

An infinite dimensional vector bundle on X

- Our operators act on $C^{\infty}\left(\widehat{\mathcal{X}}, \pi^{*} \Lambda^{\wedge}\left(T^{*} X \oplus N^{*}\right)\right)$.
- Using Bargmann and Фок isomorphism $L_{2}(T X) \simeq S \cdot\left(T^{*} X\right), L_{2}(N) \simeq S \cdot\left(N^{*}\right) \ldots$

The trace formula as a Lefschetz formula

An infinite dimensional vector bundle on X

- Our operators act on $C^{\infty}\left(\widehat{\mathcal{X}}, \pi^{*} \Lambda^{\prime}\left(T^{*} X \oplus N^{*}\right)\right)$.
- Using Bargmann and Фок isomorphism $L_{2}(T X) \simeq S^{*}\left(T^{*} X\right), L_{2}(N) \simeq S^{*}\left(N^{*}\right) \ldots$
- ...so that our operators act on $C^{\infty}\left(X, S^{*}\left(T^{*} X \oplus N^{*}\right) \otimes \Lambda^{\prime}\left(T^{*} X \oplus N^{*}\right)\right)$.

An infinite dimensional vector bundle on X

- Our operators act on $C^{\infty}\left(\widehat{\mathcal{X}}, \pi^{*} \Lambda^{\prime}\left(T^{*} X \oplus N^{*}\right)\right)$.
- Using Bargmann and Фок isomorphism $L_{2}(T X) \simeq S^{*}\left(T^{*} X\right), L_{2}(N) \simeq S^{*}\left(N^{*}\right) \ldots$
- ...so that our operators act on $C^{\infty}\left(X, S^{*}\left(T^{*} X \oplus N^{*}\right) \otimes \Lambda^{\wedge}\left(T^{*} X \oplus N^{*}\right)\right)$.
- Geometric picture of enlarging the space equivalent to representation picture of taking infinite dimensional vector bundle.

An infinite dimensional vector bundle on X

- Our operators act on $C^{\infty}\left(\widehat{\mathcal{X}}, \pi^{*} \Lambda^{*}\left(T^{*} X \oplus N^{*}\right)\right)$.
- Using Bargmann and Фок isomorphism $L_{2}(T X) \simeq S \cdot\left(T^{*} X\right), L_{2}(N) \simeq S \cdot\left(N^{*}\right) \ldots$
- ...so that our operators act on

$$
C^{\infty}\left(X, S \cdot\left(T^{*} X \oplus N^{*}\right) \otimes \Lambda^{\prime}\left(T^{*} X \oplus N^{*}\right)\right)
$$

- Geometric picture of enlarging the space equivalent to representation picture of taking infinite dimensional vector bundle.
- $\left(S^{\cdot}\left(T^{*} X \oplus N^{*}\right) \otimes \Lambda^{\cdot}\left(T^{*} X \oplus N^{*}\right), d^{T X \oplus N}\right)=$ fibrewise algebraic de Rham complex.

Elliptic and hypoelliptic operators
The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

A formula for \mathcal{L}_{b}^{X}

Elliptic and hypoelliptic operators
The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

A formula for \mathcal{L}_{b}^{X}

θ involution of Cartan $=\mp 1$ on $T X, N$.

The trace formula as a Lefschetz formula

A formula for \mathcal{L}_{b}^{X}

θ involution of Cartan $=\mp 1$ on $T X, N$.
$\mathfrak{D}_{b}^{X}=\widehat{D}_{b}^{K}+i c\left(\left[Y^{T X}, Y^{N}\right]\right) \ldots+\frac{1}{b} \widehat{c}\left(Y^{T X}+i Y^{N}\right) \ldots .$.

A formula for \mathcal{L}_{b}^{X}

θ involution of Cartan $=\mp 1$ on $T X, N$.
$\mathfrak{D}_{b}^{X}=\widehat{D}_{b}^{K}+i c\left(\left[Y^{T X}, Y^{N}\right]\right) \ldots+\frac{1}{b} \widehat{c}\left(Y^{T X}+i Y^{N}\right) \ldots \ldots$.
$\mathcal{L}_{b}^{X}=\frac{1}{2}\left|\left[Y^{N}, Y^{T X}\right]\right|^{2}+\frac{1}{2 b^{2}}\left(-\Delta^{T X \oplus N}+|Y|^{2}-n\right)+\frac{N^{\Lambda}\left(T^{*} X \oplus N^{*}\right)}{b^{2}}$

A formula for \mathcal{L}_{b}^{X}

θ involution of Cartan $=\mp 1$ on $T X, N$.
$\mathfrak{D}_{b}^{X}=\widehat{D}_{b}^{K}+i c\left(\left[Y^{T X}, Y^{N}\right]\right) \ldots+\frac{1}{b} \widehat{c}\left(Y^{T X}+i Y^{N}\right) \ldots .$.
$\mathcal{L}_{b}^{X}=\frac{1}{2}\left|\left[Y^{N}, Y^{T X}\right]\right|^{2}+\frac{1}{2 b^{2}}\left(-\Delta^{T X \oplus N}+|Y|^{2}-n\right)+\frac{N^{\Lambda^{\prime}\left(T^{*} X \oplus N^{*}\right)}}{b^{2}}$

$$
+\frac{1}{b}\left(\nabla_{Y^{T X}}+\widehat{c}\left(\operatorname{ad}\left(Y^{T X}\right)\right)-c\left(\operatorname{ad}\left(Y^{T X}\right)+i \theta \operatorname{ad}\left(Y^{N}\right)\right)\right)
$$

A formula for \mathcal{L}_{b}^{X}

θ involution of Cartan $=\mp 1$ on $T X, N$.
$\mathfrak{D}_{b}^{X}=\widehat{D}_{b}^{K}+i c\left(\left[Y^{T X}, Y^{N}\right]\right) \ldots+\frac{1}{b} \widehat{c}\left(Y^{T X}+i Y^{N}\right) \ldots \ldots$.
$\mathcal{L}_{b}^{X}=\frac{1}{2}\left|\left[Y^{N}, Y^{T X}\right]\right|^{2}+\frac{1}{2 b^{2}}\left(-\Delta^{T X \oplus N}+|Y|^{2}-n\right)+\frac{N^{\Lambda^{\prime}\left(T^{*} X \oplus N^{*}\right)}}{b^{2}}$

$$
+\frac{1}{b}\left(\nabla_{Y^{T X}}+\widehat{c}\left(\operatorname{ad}\left(Y^{T X}\right)\right)-c\left(\operatorname{ad}\left(Y^{T X}\right)+i \theta \operatorname{ad}\left(Y^{N}\right)\right)\right)
$$

Making $b \rightarrow 0, \mathcal{L}_{b}^{X}$ deforms $\frac{1}{2}\left(-\Delta^{X}+c\right)$.

Elliptic and hypoelliptic operators
The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

A locally symmetric space

A locally symmetric space

- $Z=\Gamma \backslash X$, with Γ discrete cocompact.

A locally symmetric space

- $Z=\Gamma \backslash X$, with Γ discrete cocompact.
- We have the identity...

A locally symmetric space

- $Z=\Gamma \backslash X$, with Γ discrete cocompact.
- We have the identity...
- $\operatorname{Tr}^{Z}\left[\exp \left(\frac{t}{2}\left(\Delta^{Z}+c\right)\right)\right]=\operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-t \mathcal{L}_{b}^{Z}\right)\right]$.

A locally symmetric space

- $Z=\Gamma \backslash X$, with Γ discrete cocompact.
- We have the identity...
- $\operatorname{Tr}^{Z}\left[\exp \left(\frac{t}{2}\left(\Delta^{Z}+c\right)\right)\right]=\operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-t \mathcal{L}_{b}^{Z}\right)\right]$.
- This identity splits as an identity of semisimple orbital integrals.

Elliptic and hypoelliptic operators
The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

Semisimple orbital integrals

The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

Semisimple orbital integrals

- $\gamma \in G$ semisimple.

The trace formula as a Lefschetz formula

Semisimple orbital integrals

- $\gamma \in G$ semisimple.
- For $t>0, \operatorname{Tr}^{[\gamma]}\left[\exp \left(-t\left(C^{\mathfrak{q}, X}+c\right) / 2\right)\right]$ orbital integral on adjoint orbit of γ :

$$
\int_{Z(\gamma) \backslash G} \operatorname{Tr}^{E}\left[p_{t}\left(g^{-1} \gamma g\right)\right] d g
$$

Elliptic and hypoelliptic operators
The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

Existence of the orbital integral

The trace formula as a Lefschetz formula

Existence of the orbital integral

$$
\left|p_{t}\left(x, x^{\prime}\right)\right| \leq C \exp \left(-C^{\prime} d^{2}\left(x, x^{\prime}\right)\right)
$$

Existence of the orbital integral

$\left|p_{t}\left(x, x^{\prime}\right)\right| \leq C \exp \left(-C^{\prime} d^{2}\left(x, x^{\prime}\right)\right)$.
$X(\gamma) \subset X$ symmetric space for $Z(\gamma)$ minimizing $d(x, \gamma x)$.

Existence of the orbital integral

$$
\left|p_{t}\left(x, x^{\prime}\right)\right| \leq C \exp \left(-C^{\prime} d^{2}\left(x, x^{\prime}\right)\right)
$$

$X(\gamma) \subset X$ symmetric space for $Z(\gamma)$ minimizing $d(x, \gamma x)$.

Elliptic and hypoelliptic operators
The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

A fundamental identity

The trace formula as a Lefschetz formula

A fundamental identity

- $\operatorname{Tr}^{[\gamma]}\left[\exp \left(-\frac{1}{2}\left(C^{\mathfrak{g}, X}+c\right)\right)\right]=\operatorname{Tr}_{\mathrm{s}}{ }^{[\gamma]}\left[\exp \left(-t \mathcal{L}_{b}^{X}\right)\right]$.

The trace formula as a Lefschetz formula

A fundamental identity

- $\operatorname{Tr}^{[\gamma]}\left[\exp \left(-\frac{1}{2}\left(C^{\mathfrak{g}, X}+c\right)\right)\right]=\operatorname{Tr}_{\mathrm{s}}{ }^{[\gamma]}\left[\exp \left(-t \mathcal{L}_{b}^{X}\right)\right]$.
- Make $b \rightarrow+\infty$.

The trace formula as a Lefschetz formula

A fundamental identity

- $\operatorname{Tr}^{[\gamma]}\left[\exp \left(-\frac{1}{2}\left(C^{\mathfrak{g}, X}+c\right)\right)\right]=\operatorname{Tr}_{\mathrm{s}}{ }^{[\gamma]}\left[\exp \left(-t \mathcal{L}_{b}^{X}\right)\right]$.
- Make $b \rightarrow+\infty$.
- Because the geodesic flow becomes dominant...

The trace formula as a Lefschetz formula

A fundamental identity

- $\operatorname{Tr}^{[\gamma]}\left[\exp \left(-\frac{1}{2}\left(C^{\mathfrak{g}, X}+c\right)\right)\right]=\operatorname{Tr}_{\mathrm{s}}{ }^{[\gamma]}\left[\exp \left(-t \mathcal{L}_{b}^{X}\right)\right]$.
- Make $b \rightarrow+\infty$.
- Because the geodesic flow becomes dominant...
- ... the orbital integral localizes near $X(\gamma) \subset X$.

The trace formula as a Lefschetz formula

A fundamental identity

- $\operatorname{Tr}^{[\gamma]}\left[\exp \left(-\frac{1}{2}\left(C^{\mathfrak{g}, X}+c\right)\right)\right]=\operatorname{Tr}_{\mathrm{s}}{ }^{[\gamma]}\left[\exp \left(-t \mathcal{L}_{b}^{X}\right)\right]$.
- Make $b \rightarrow+\infty$.
- Because the geodesic flow becomes dominant...
- ... the orbital integral localizes near $X(\gamma) \subset X$.
- Analytic difficulties connected with hyperbolicity of geodesic flow.

The trace formula as a Lefschetz formula

A fundamental identity

- $\operatorname{Tr}^{[\gamma]}\left[\exp \left(-\frac{1}{2}\left(C^{\mathfrak{g}, X}+c\right)\right)\right]=\operatorname{Tr}_{\mathrm{s}}{ }^{[\gamma]}\left[\exp \left(-t \mathcal{L}_{b}^{X}\right)\right]$.
- Make $b \rightarrow+\infty$.
- Because the geodesic flow becomes dominant...
- ... the orbital integral localizes near $X(\gamma) \subset X$.
- Analytic difficulties connected with hyperbolicity of geodesic flow.
- Analogy with Lefschetz fixed point formulas.

Elliptic and hypoelliptic operators
The trace formula as a Lefschetz formula
 Conclusion References

The function $J_{\gamma}\left(Y_{0}^{\mathfrak{l}}\right)$

The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

The function $J_{\gamma}\left(Y_{0}^{\mathfrak{l}}\right)$

- $\gamma=e^{a} k^{-1}, \operatorname{Ad}(k) a=a$.

The trace formula as a Lefschetz formula

The function $J_{\gamma}\left(Y_{0}^{\mathfrak{l}}\right)$

- $\gamma=e^{a} k^{-1}, \operatorname{Ad}(k) a=a$.
- $\mathfrak{z}(\gamma)=\mathfrak{p}(\gamma) \oplus \mathfrak{k}(\gamma)$.

The function $J_{\gamma}\left(Y_{0}^{\mathfrak{\ell}}\right)$

- $\gamma=e^{a} k^{-1}, \operatorname{Ad}(k) a=a$.
- $\mathfrak{z}(\gamma)=\mathfrak{p}(\gamma) \oplus \mathfrak{k}(\gamma)$.
- $J_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right)$ function on $\mathfrak{k}(\gamma) \simeq$ ratio of two Atiyah-Bott for $T X \simeq \mathfrak{p}$ and $N \simeq \mathfrak{k}$.

Elliptic and hypoelliptic operators
The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

Do not look at this!

Do not look at this!

$$
J_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right)=\frac{1}{\left.|\operatorname{det}(1-\operatorname{Ad}(\gamma))|_{\mathfrak{a}_{0}^{\prime}}\right|^{1 / 2}} \frac{\widehat{A}\left(\left.i \operatorname{ad}\left(Y_{0}^{\mathfrak{k}}\right)\right|_{\mathfrak{p}(\gamma)}\right)}{\widehat{A}\left(i \operatorname{ad}\left(Y_{0}^{\mathrm{t}}\right)_{\mathfrak{k}(\gamma)}\right)}
$$

Do not look at this!

$$
\begin{aligned}
J_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right)= & \frac{1}{\left.|\operatorname{det}(1-\operatorname{Ad}(\gamma))|_{\mathfrak{z}}^{\perp}\right|^{1 / 2}} \frac{\widehat{A}\left(\left.i \operatorname{ad}\left(Y_{0}^{\mathfrak{k}}\right)\right|_{\mathfrak{p}(\gamma)}\right)}{\widehat{A}\left(i \operatorname{ad}\left(Y_{0}^{\mathfrak{k}}\right)_{\mathfrak{k}(\gamma)}\right)} \\
& {\left[\frac{1}{\left.\operatorname{det}\left(1-\operatorname{Ad}\left(k^{-1}\right)\right)\right|_{\mathfrak{z}_{0}^{\perp}(\gamma)}}\right.}
\end{aligned}
$$

Do not look at this!

$$
\begin{aligned}
& J_{\gamma}\left(Y_{0}^{\mathfrak{t}}\right)=\frac{1}{\left.|\operatorname{det}(1-\operatorname{Ad}(\gamma))|_{\partial_{0}}\right|^{1 / 2}} \frac{\widehat{A}\left(\left.i \operatorname{ad}\left(Y_{0}^{\mathfrak{k}}\right)\right|_{\mathfrak{p}(\gamma)}\right)}{\widehat{A}\left(i \operatorname{ad}\left(Y_{0}^{\mathrm{k}}\right)_{\mathfrak{e}(\gamma)}\right)} \\
& {\left[\frac{1}{\left.\operatorname{det}\left(1-\operatorname{Ad}\left(k^{-1}\right)\right)\right|_{\mathfrak{z}_{0}(\gamma)}}\right.}
\end{aligned}
$$

$$
\left.\frac{\left.\operatorname{det}\left(1-\exp \left(-i \operatorname{ad}\left(Y_{0}^{\mathrm{k}}\right)\right) \operatorname{Ad}\left(k^{-1}\right)\right)\right|_{\boldsymbol{\ell}_{0}^{\mathrm{\rho}}}(\gamma)}{\left.\operatorname{det}\left(1-\exp \left(-i \operatorname{ad}\left(Y_{0}^{\mathrm{t}}\right)\right) \operatorname{Ad}\left(k^{-1}\right)\right)\right|_{\boldsymbol{p}_{0}^{\perp}(\gamma)}}\right]^{1 / 2} .
$$

Elliptic and hypoelliptic operators
The trace formula as a Lefschetz formula
RRG in Bott-Chern cohomology Conclusion References

The final formula

The final formula

$$
\begin{aligned}
& \operatorname{Tr}^{[r]}\left[\exp \left(t\left(\Delta^{X}+c\right) / 2\right)\right]= \\
& \quad \begin{aligned}
& \int_{\mathrm{t}(\gamma)} J_{\gamma}\left(Y_{0}^{\mathrm{t}}\right) \operatorname{Tr}^{E}\left[\rho^{E}\left(k^{-1}\right) \exp \left(-|a|^{2} / 2 t\right)\right. \\
&(2 \pi t)^{p / 2}\left.\left(-i \rho^{E}\left(Y_{0}^{\mathrm{t}}\right)\right)\right] \\
& \exp \left(-\left|Y_{0}^{\mathrm{t}}\right|^{2} / 2 t\right) \frac{d Y_{0}^{\mathrm{t}}}{(2 \pi t)^{q / 2}} .
\end{aligned}
\end{aligned}
$$

The final formula

$$
\begin{aligned}
& \operatorname{Tr}^{[\gamma]}\left[\exp \left(t\left(\Delta^{X}+c\right) / 2\right)\right]= \frac{\exp \left(-|a|^{2} / 2 t\right)}{(2 \pi t)^{p / 2}} \\
& \int_{\mathfrak{k}(\gamma)} J_{\gamma}\left(Y_{0}^{\mathfrak{t}}\right) \operatorname{Tr}^{E}\left[\rho^{E}\left(k^{-1}\right) \exp \left(-i \rho^{E}\left(Y_{0}^{\mathfrak{k}}\right)\right)\right] \\
& \exp \left(-\left|Y_{0}^{\mathfrak{k}}\right|^{2} / 2 t\right) \frac{d Y_{0}^{\mathfrak{k}}}{(2 \pi t)^{q / 2}} .
\end{aligned}
$$

Formula \simeq Atiyah-Bott $L(g)=\int_{X_{g}} \widehat{A}_{g}(T X) \operatorname{ch}_{g}(E)$.

The final formula

$$
\begin{aligned}
& \operatorname{Tr}^{[\gamma]}\left[\exp \left(t\left(\Delta^{X}+c\right) / 2\right)\right]= \frac{\exp \left(-|a|^{2} / 2 t\right)}{(2 \pi t)^{p / 2}} \\
& \int_{\mathfrak{k}(\gamma)} J_{\gamma}\left(Y_{0}^{\mathfrak{t}}\right) \operatorname{Tr}^{E}\left[\rho^{E}\left(k^{-1}\right) \exp \left(-i \rho^{E}\left(Y_{0}^{\mathfrak{t}}\right)\right)\right] \\
& \exp \left(-\left|Y_{0}^{\mathfrak{k}}\right|^{2} / 2 t\right) \frac{d Y_{0}^{\mathfrak{k}}}{(2 \pi t)^{q / 2}} .
\end{aligned}
$$

Formula \simeq Atiyah-Bott $L(g)=\int_{X_{g}} \widehat{A}_{g}(T X) \mathrm{ch}_{g}(E)$. If $G=\mathrm{SL}_{2}(\mathbf{R})$, one recovers Selberg's original trace formula.

The final formula

$$
\begin{aligned}
& \operatorname{Tr}^{[\gamma]}\left[\exp \left(t\left(\Delta^{X}+c\right) / 2\right)\right]= \frac{\exp \left(-|a|^{2} / 2 t\right)}{(2 \pi t)^{p / 2}} \\
& \int_{\mathfrak{k}(\gamma)} J_{\gamma}\left(Y_{0}^{\mathfrak{t}}\right) \operatorname{Tr}^{E}\left[\rho^{E}\left(k^{-1}\right) \exp \left(-i \rho^{E}\left(Y_{0}^{\mathfrak{t}}\right)\right)\right] \\
& \exp \left(-\left|Y_{0}^{\mathfrak{k}}\right|^{2} / 2 t\right) \frac{d Y_{0}^{\mathfrak{k}}}{(2 \pi t)^{q / 2}} .
\end{aligned}
$$

Formula \simeq Atiyah-Bott $L(g)=\int_{X_{g}} \widehat{A}_{g}(T X) \mathrm{ch}_{g}(E)$. If $G=\mathrm{SL}_{2}(\mathbf{R})$, one recovers Selberg's original trace formula. The formula extends to wave kernel.

The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology

Conclusion References

Bott-Chern cohomology

Bott-Chern cohomology

- S complex manifold of dimension n.

Bott-Chern cohomology

- S complex manifold of dimension n.
- Bott-Chern cohomology

$$
H_{\mathrm{BC}}^{(p, q)}(S, \mathbf{C})=\frac{\operatorname{ker} d^{S} \cap \Omega^{(p, q)}(S, \mathbf{C})}{\bar{\partial}^{S} \partial^{S} \Omega^{(p-1, q-1)}(S, \mathbf{C})}
$$

Bott-Chern cohomology

- S complex manifold of dimension n.
- Bott-Chern cohomology

$$
H_{\mathrm{BC}}^{(p, q)}(S, \mathbf{C})=\frac{\operatorname{ker} d^{S} \cap \Omega^{(p, q)}(S, \mathbf{C})}{\bar{\partial}^{S} \partial^{S} \Omega^{(p-1, q-1)}(S, \mathbf{C})} .
$$

- In general $H_{\mathrm{BC}}(X, \mathbf{C})$ strictly finer than $H_{\mathrm{DR}}(X, \mathbf{C})$.

Bott-Chern cohomology

- S complex manifold of dimension n.
- Bott-Chern cohomology

$$
H_{\mathrm{BC}}^{(p, q)}(S, \mathbf{C})=\frac{\operatorname{ker} d^{S} \cap \Omega^{(p, q)}(S, \mathbf{C})}{\bar{\partial}^{s} \partial^{s} \Omega^{(p-1, q-1)}(S, \mathbf{C})} .
$$

- In general $H_{\mathrm{BC}}(X, \mathbf{C})$ strictly finer than $H_{\mathrm{DR}}(X, \mathbf{C})$.
- $H_{\mathrm{BC}}^{(=)}(S, \mathbf{R})=\bigoplus_{0 \leq p \leq n} H_{\mathrm{BC}}^{(p, p)}(S, \mathbf{R})$.

Bott-Chern cohomology

- S complex manifold of dimension n.
- Bott-Chern cohomology

$$
H_{\mathrm{BC}}^{(p, q)}(S, \mathbf{C})=\frac{\operatorname{ker} d^{S} \cap \Omega^{(p, q)}(S, \mathbf{C})}{\bar{\partial}^{S} \partial^{S} \Omega^{(p-1, q-1)}(S, \mathbf{C})} .
$$

- In general $H_{\mathrm{BC}}(X, \mathbf{C})$ strictly finer than $H_{\mathrm{DR}}(X, \mathbf{C})$.
- $H_{\mathrm{BC}}^{(=)}(S, \mathbf{R})=\bigoplus_{0 \leq p \leq n} H_{\mathrm{BC}}^{(p, p)}(S, \mathbf{R})$.
- Holomorphic vector bundles have characteristic classes in $H_{\mathrm{BC}}^{(=)}(S, \mathbf{R})$.

The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology

Conclusion
References

A theorem of RRG

A theorem of RRG

- $p: M \rightarrow S$ proper submersion of complex manifolds, with fibre $X_{s}=p^{-1}(s)$.

A theorem of RRG

- $p: M \rightarrow S$ proper submersion of complex manifolds, with fibre $X_{s}=p^{-1}(s)$.
- F holomorphic vector bundle on M.

A theorem of RRG

- $p: M \rightarrow S$ proper submersion of complex manifolds, with fibre $X_{s}=p^{-1}(s)$.
- F holomorphic vector bundle on M.

Theorem

A theorem of RRG

- $p: M \rightarrow S$ proper submersion of complex manifolds, with fibre $X_{s}=p^{-1}(s)$.
- F holomorphic vector bundle on M.

Theorem

If $R p_{*} F$ is locally free, then

A theorem of RRG

- $p: M \rightarrow S$ proper submersion of complex manifolds, with fibre $X_{s}=p^{-1}(s)$.
- F holomorphic vector bundle on M.

Theorem

If $R p_{*} F$ is locally free, then

$$
\operatorname{ch}_{\mathrm{BC}}\left(R p_{*} F\right)=p_{*}\left[\operatorname{Td}_{\mathrm{BC}}(T X) \operatorname{ch}_{\mathrm{BC}}(F)\right] \text { in } H_{\mathrm{BC}}^{(=)}(S, \mathbf{R})
$$

A theorem of RRG

- $p: M \rightarrow S$ proper submersion of complex manifolds, with fibre $X_{s}=p^{-1}(s)$.
- F holomorphic vector bundle on M.

Theorem

If $R p_{*} F$ is locally free, then
$\operatorname{ch}_{\mathrm{BC}}\left(R p_{*} F\right)=p_{*}\left[\mathrm{Td}_{\mathrm{BC}}(T X) \operatorname{ch}_{\mathrm{BC}}(F)\right]$ in $H_{\mathrm{BC}}^{(=)}(S, \mathbf{R})$.
Also $c_{1, \mathrm{BC}}\left(\operatorname{det} R \cdot p_{*} F\right)=p_{*}\left[\operatorname{Td}_{\mathrm{BC}}(T X) \operatorname{ch}_{\mathrm{BC}}(F)\right]^{(1,1)}$.

A theorem of RRG

- $p: M \rightarrow S$ proper submersion of complex manifolds, with fibre $X_{s}=p^{-1}(s)$.
- F holomorphic vector bundle on M.

Theorem

If $R p_{*} F$ is locally free, then

$$
\operatorname{ch}_{\mathrm{BC}}\left(R p_{*} F\right)=p_{*}\left[\operatorname{Td}_{\mathrm{BC}}(T X) \operatorname{ch}_{\mathrm{BC}}(F)\right] \text { in } H_{\mathrm{BC}}^{(=)}(S, \mathbf{R})
$$

Also $c_{1, \mathrm{BC}}\left(\operatorname{det} R \cdot p_{*} F\right)=p_{*}\left[\operatorname{Td}_{\mathrm{BC}}(T X) \operatorname{ch}_{\mathrm{BC}}(F)\right]^{(1,1)}$.

Remark

A theorem of RRG

- $p: M \rightarrow S$ proper submersion of complex manifolds, with fibre $X_{s}=p^{-1}(s)$.
- F holomorphic vector bundle on M.

Theorem

If $R p_{*} F$ is locally free, then

$$
\operatorname{ch}_{\mathrm{BC}}\left(R p_{*} F\right)=p_{*}\left[\operatorname{Td}_{\mathrm{BC}}(T X) \operatorname{ch}_{\mathrm{BC}}(F)\right] \text { in } H_{\mathrm{BC}}^{(=)}(S, \mathbf{R})
$$

Also $c_{1, \mathrm{BC}}\left(\operatorname{det} R \cdot p_{*} F\right)=p_{*}\left[\operatorname{Td}_{\mathrm{BC}}(T X) \operatorname{ch}_{\mathrm{BC}}(F)\right]^{(1,1)}$.

Remark

This result is known if M is Kähler.

The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology

Conclusion References

The space \mathcal{X}

The space \mathcal{X}

- In general, elliptic methods used in the context of Аракелов geometry do not work (no local index theory).

The space \mathcal{X}

- In general, elliptic methods used in the context of Аракелов geometry do not work (no local index theory).
- I will explain part of the construction when S is a point.

The space \mathcal{X}

- In general, elliptic methods used in the context of Аракелов geometry do not work (no local index theory).
- I will explain part of the construction when S is a point.
- Let $\pi: \mathcal{X} \rightarrow X$ be total space of $T X$, with fibre $\widehat{T X}$, $\widehat{y} \in \widehat{T X}$ tautological section, $y \in T X$ corresponding section.

The space \mathcal{X}

- In general, elliptic methods used in the context of Аракелов geometry do not work (no local index theory).
- I will explain part of the construction when S is a point.
- Let $\pi: \mathcal{X} \rightarrow X$ be total space of $T X$, with fibre $\widehat{T X}$, $\widehat{y} \in \widehat{T X}$ tautological section, $y \in T X$ corresponding section.
- $A_{b}^{\prime \prime}=\bar{\partial}^{\mathcal{X}}+i_{y} / b^{2}$ acts on $\Omega^{(0,)}\left(\mathcal{X}, \pi^{*}\left(\Lambda^{\prime}\left(T^{*} X\right) \otimes F\right)\right)$.

Exotic Hodge theory

Elliptic and hypoelliptic operators
The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology

Conclusion
References

Exotic Hodge theory

- On $\Omega^{(0,)}\left(\mathcal{X}, \pi^{*}\left(\Lambda^{\prime}\left(T^{*} X\right) \otimes F\right)\right) \ldots$

Exotic Hodge theory

- On $\Omega^{(0, \cdot)}\left(\mathcal{X}, \pi^{*}\left(\Lambda^{\cdot}\left(T^{*} X\right) \otimes F\right)\right) \ldots$
-introduce duality which is essentially Serre duality on X, and Hermitian duality fibrewise.

Exotic Hodge theory

- On $\Omega^{(0, \cdot)}\left(\mathcal{X}, \pi^{*}\left(\Lambda^{\cdot}\left(T^{*} X\right) \otimes F\right)\right) \ldots$
-introduce duality which is essentially Serre duality on X, and Hermitian duality fibrewise.
- $r(x, \widehat{y})=(x,-\widehat{y})$.

Exotic Hodge theory

- On $\Omega^{(0, \cdot)}\left(\mathcal{X}, \pi^{*}\left(\Lambda^{\cdot}\left(T^{*} X\right) \otimes F\right)\right) \ldots$
-introduce duality which is essentially Serre duality on X, and Hermitian duality fibrewise.
- $r(x, \widehat{y})=(x,-\widehat{y})$.
- $\epsilon\left(s \widehat{\otimes} t, s^{\prime} \widehat{\otimes} t^{\prime}\right)=$

$$
\frac{i^{n}}{(2 \pi)^{2 n}}(-1)^{p(p+1) / 2} \int_{\mathcal{X}}\left\langle\underline{r}^{*} t, t^{\prime}\right\rangle_{g^{\wedge}}\left(\overline{\overline{T^{*} X}}\right) \otimes F \underline{r}^{*} s \wedge \overline{e^{-i \omega^{X}} s^{\prime}} d v_{\widehat{T X}}
$$

Exotic Hodge theory

- On $\Omega^{(0, \cdot)}\left(\mathcal{X}, \pi^{*}\left(\Lambda^{\cdot}\left(T^{*} X\right) \otimes F\right)\right) \ldots$
-introduce duality which is essentially Serre duality on X, and Hermitian duality fibrewise.
- $r(x, \widehat{y})=(x,-\widehat{y})$.
- $\epsilon\left(s \widehat{\otimes} t, s^{\prime} \widehat{\otimes} t^{\prime}\right)=$

$$
\frac{i^{n}}{(2 \pi)^{2 n}}(-1)^{p(p+1) / 2} \int_{\mathcal{X}}\left\langle\underline{r}^{*} t, t^{\prime}\right\rangle_{g^{\wedge}}\left(\overline{\overline{T^{*} X}}\right) \otimes F \underline{r}^{*} s \wedge \overline{e^{-i \omega^{X}} s^{\prime}} d v_{\widehat{T X}}
$$

- 'Laplacian' associated with $A_{b}^{\prime \prime}, \epsilon$ hypoelliptic and looks like

$$
\frac{1}{2 b^{2}}\left(-\Delta_{g^{T X}}^{V}+|Y|_{g^{T X}}^{2}\right)+\frac{1}{b} \nabla_{Y}+
$$

Exotic Hodge theory

- On $\Omega^{(0, \cdot)}\left(\mathcal{X}, \pi^{*}\left(\Lambda^{\cdot}\left(T^{*} X\right) \otimes F\right)\right) \ldots$
-introduce duality which is essentially Serre duality on X, and Hermitian duality fibrewise.
- $r(x, \widehat{y})=(x,-\widehat{y})$.
- $\epsilon\left(s \widehat{\otimes} t, s^{\prime} \widehat{\otimes} t^{\prime}\right)=$

$$
\frac{i^{n}}{(2 \pi)^{2 n}}(-1)^{p(p+1) / 2} \int_{\mathcal{X}}\left\langle\underline{r}^{*} t, t^{\prime}\right\rangle_{g^{\wedge}}\left(\overline{\overline{T^{*} X}}\right) \otimes F \underline{r}^{*} s \wedge \overline{e^{-i \omega^{X}} s^{\prime}} d v_{\widehat{T X}}
$$

- 'Laplacian' associated with $A_{b}^{\prime \prime}, \epsilon$ hypoelliptic and looks like

$$
\frac{1}{2 b^{2}}\left(-\Delta_{g^{T X}}^{V}+|Y|_{g^{T X}}^{2}\right)+\frac{1}{b} \nabla_{Y}+.
$$

- If pure Serre duality was used, the 'Laplacian' would be 0 !

This still fails!

This still fails!

- Proving RRG consists in finding an explicit limit as $t \rightarrow 0$ of certain supertraces.

This still fails!

- Proving RRG consists in finding an explicit limit as $t \rightarrow 0$ of certain supertraces.
- This fails for elliptic Hodge theory.

This still fails!

- Proving RRG consists in finding an explicit limit as $t \rightarrow 0$ of certain supertraces.
- This fails for elliptic Hodge theory.
- This still fails for the above hypoelliptic Hodge theory.

This still fails!

- Proving RRG consists in finding an explicit limit as $t \rightarrow 0$ of certain supertraces.
- This fails for elliptic Hodge theory.
- This still fails for the above hypoelliptic Hodge theory.
- This works for a Hodge theory, in which the Kähler form ω^{X} is replaced by $|Y|_{g \widehat{T X}}^{2} \omega^{X}$.

RRG and Fourier transform

RRG and Fourier transform

- Riemann-Roch $\chi(F)=\int_{X} \operatorname{Td}(T X) \operatorname{ch}(F) \ldots$

RRG and Fourier transform

- Riemann-Roch $\chi(F)=\int_{X} \operatorname{Td}(T X) \operatorname{ch}(F) \ldots$
- ... has some Fourier transform quality...

RRG and Fourier transform

- Riemann-Roch $\chi(F)=\int_{X} \operatorname{Td}(T X) \operatorname{ch}(F) \ldots$
- ... has some Fourier transform quality...
- ...since it transforms a global object into a local one.

RRG and Fourier transform

- Riemann-Roch $\chi(F)=\int_{X} \operatorname{Td}(T X) \operatorname{ch}(F) \ldots$
- ... has some Fourier transform quality...
- ... since it transforms a global object into a local one.
- The theory of the hypoelliptic Laplacian is an attempt to invert the Fourier transform.

Elliptic and hypoelliptic operators
The case of S^{1}
The trace formula as a Lefschetz formula RRG in Bott-Chern cohomology

Fourier transform and the geodesic flow

Fourier transform and the geodesic flow

- The principal symbol of the generator of the geodesic flow $\nabla_{Y} \simeq \sum_{i=1}^{n} Y^{i} \frac{\partial}{\partial x^{i}} \ldots$

Fourier transform and the geodesic flow

- The principal symbol of the generator of the geodesic flow $\nabla_{Y} \simeq \sum_{i=1}^{n} Y^{i} \frac{\partial}{\partial x^{i}} \ldots$
- ... is given by $i\langle Y, \xi\rangle \ldots$

Fourier transform and the geodesic flow

- The principal symbol of the generator of the geodesic flow $\nabla_{Y} \simeq \sum_{i=1}^{n} Y^{i} \frac{\partial}{\partial x^{i}} \ldots$
- ... is given by $i\langle Y, \xi\rangle \ldots$
- ... also appears in Fourier integral $\int_{\mathbf{R}^{n}} e^{-i\langle Y, \xi\rangle} \ldots d Y$.

Fourier transform and the geodesic flow

- The principal symbol of the generator of the geodesic flow $\nabla_{Y} \simeq \sum_{i=1}^{n} Y^{i} \frac{\partial}{\partial x^{i}} \ldots$
- ... is given by $i\langle Y, \xi\rangle \ldots$
- ... also appears in Fourier integral $\int_{\mathbf{R}^{n}} e^{-i\langle Y, \xi\rangle} \ldots d Y$.
- Introducing the geodesic flow is a way of forcing Fourier transform in the analysis.

Hodge theory and the harmonic oscillator

Hodge theory and the harmonic oscillator

- $X \subset \mathcal{X}$ zero section of total space of $T X$.

Hodge theory and the harmonic oscillator

- $X \subset \mathcal{X}$ zero section of total space of $T X$.
- $C^{\infty}(X, \mathbf{R}) \simeq$ cohomology of fibrewise de Rham...

Hodge theory and the harmonic oscillator

- $X \subset \mathcal{X}$ zero section of total space of $T X$.
- $C^{\infty}(X, \mathbf{R}) \simeq$ cohomology of fibrewise de Rham...
- \simeq ground state of fibrewise harmonic oscillator (physically counterintuitive).

Hodge theory and the harmonic oscillator

- $X \subset \mathcal{X}$ zero section of total space of $T X$.
- $C^{\infty}(X, \mathbf{R}) \simeq$ cohomology of fibrewise de Rham...
- \simeq ground state of fibrewise harmonic oscillator (physically counterintuitive).
- The hypoelliptic Laplacian introduces extra degrees of freedom in fibre direction...

Hodge theory and the harmonic oscillator

- $X \subset \mathcal{X}$ zero section of total space of $T X$.
- $C^{\infty}(X, \mathbf{R}) \simeq$ cohomology of fibrewise de Rham...
- \simeq ground state of fibrewise harmonic oscillator (physically counterintuitive).
- The hypoelliptic Laplacian introduces extra degrees of freedom in fibre direction...
- ... which exist even in very rigid situations.

固 J.-M. Bismut, Hypoelliptic Laplacian and Bott-Chern cohomology, Preprint (Orsay) (2011).

目 , Hypoelliptic Laplacian and orbital integrals, Annals of Mathematics Studies, vol. 177, Princeton University Press, Princeton, NJ, 2011. MR 2828080
, Index theory and the hypoelliptic Laplacian, Proceedings of the Conference in honour of Jeff Cheeger (Xianzhe Dai and Xiaochun Rong, eds.), Birkhäuser Boston Inc., 2012, pp. 181-232.

